Zobrazeno 1 - 10
of 23
pro vyhledávání: '"R. I. Okuonghae"'
Autor:
I. B. Aiguobasimwin, R. I. Okuonghae
Publikováno v:
Journal of Applied Mathematics, Vol 2019 (2019)
In this paper, a new class of two-derivative two-step Runge-Kutta (TDTSRK) methods for the numerical solution of non-stiff initial value problems (IVPs) in ordinary differential equation (ODEs) is considered. The TDTSRK methods are a special case of
Externí odkaz:
https://doaj.org/article/a7b212801bf943e08a9c9cddb8b6e0ea
Autor:
R. I. Okuonghae, M. N. O. Ikhile
Publikováno v:
Journal of Algorithms & Computational Technology, Vol 9 (2015)
This paper considers multi-derivative general linear methods and thus presents some second and third derivative general linear methods of orders 5, 7 and 10 in its output methods for computing the solution of stiff initial value problems in ordinary
Externí odkaz:
https://doaj.org/article/85ffe052a72d4c6596b73d17468c80bf
Autor:
R. I. Okuonghae
Publikováno v:
Journal of Algorithms & Computational Technology, Vol 8 (2014)
This paper considers a new class of high order hybrid linear multistep methods for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The numerical experiments shows the application of the methods
Externí odkaz:
https://doaj.org/article/cb012c4c9c764ae2b3322c8deebbf004
Publikováno v:
Journal of Algorithms & Computational Technology, Vol 7 (2013)
In this paper, we consider the construction of explicit General Linear Methods (GLM) for the numerical solution of non-stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The discrete coefficients of the methods are obtaine
Externí odkaz:
https://doaj.org/article/4556a0bc9d914955a9ff02b472efb5ff
Autor:
R. I. Okuonghae, M. N. O. Ikhile
Publikováno v:
Journal of Algorithms & Computational Technology, Vol 6 (2012)
This paper considers family of A(α)-stable second derivative linear multistep methods of order p = k + 3 for step number k ≥ 15 for the solution of stiff IVPs in ODEs. The methods are demonstrated to be A(α)-stable for k ≥ 13. At k = 14, the me
Externí odkaz:
https://doaj.org/article/efad11a23e354ace88343d4a197cef81
Publikováno v:
International Journal of Applied and Computational Mathematics. 7
Autor:
R. I. Okuonghae, I. C. Felix
Publikováno v:
Far East Journal of Applied Mathematics. 99:259-273
Autor:
I. C. Felix, R. I. Okuonghae
Publikováno v:
International Journal of Applied and Computational Mathematics. 5
p-Stable hybrid linear multistep methods (HLMMs) have been a fascinating area of interest for the numerical solution of second order initial value problems in ordinary differential equations, because of their high order of accuracy. This paper presen
Autor:
R. I. Okuonghae, M. N. O. Ikhile
Publikováno v:
Numerical Analysis and Applications. 7:314-327
This paper considers the extension of the popular Runge-Kutta methods (RKM) to second derivative Runge-Kutta methods (SDRKMs) for the direct solution of stiff initial value problems (IVPs) of ordinary differential equations (ODEs). The methods are ba
Autor:
M. N. O. Ikhile, R. I. Okuonghae
Publikováno v:
Numerical Analysis and Applications. 7:57-69
This paper considers a class of highly stable block methods for numerically solving initial value problems (IVPs) in ordinary differential equations (ODEs). The boundary locus of the proposed parallel one-block, r-output point algorithms shows that t