Zobrazeno 1 - 10
of 19
pro vyhledávání: '"R. I. Grigorchuk"'
Autor:
O. N. Ageev, Ya. B. Vorobets, B. Weiss, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, L. S. Efremova, A. Yu. Zhirov, E. V. Zhuzhoma, B. S. Kashin, V. N. Kolokoltsov, A. V. Kochergin, L. M. Lerman, I. V. Mykytyuk, V. I. Oseledets, A. Yu. Plakhov, O. V. Pochinka, V. V. Ryzhikov, V. Zh. Sakbaev, A. G. Sergeev, Ya. G. Sinai, A. T. Tagi-Zade, S. V. Tikhonov, J.-P. Thouvenot, A. Ya. Helemskii, A. I. Shafarevich
Publikováno v:
Russian Mathematical Surveys. 77:361-367
Publikováno v:
Algebra: Proceedings of the International Algebraic Conference on the Occasion of the 90th Birthday of A. G. Kurosh, Moscow, Russia, May 25-30, 1998
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0455a2baad3373ca211c837de74bfd5a
https://doi.org/10.1515/9783110805697.113
https://doi.org/10.1515/9783110805697.113
Autor:
A. Maki, R. I. Grigorchuk
Publikováno v:
Mathematical Notes. 53:146-157
Publikováno v:
Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal’cev. :521-530
Autor:
P. F. Kurchanov, R. I. Grigorchuk
Publikováno v:
Ukrainian Mathematical Journal. 43:850-856
An algorithm effectively computing the width of an arbitrary element of a free group relative to a fixed basis is constructed. Some questions concerning the computation speed are discussed.
Autor:
R. I. Grigorchuk, P. F. Kurchanov
Publikováno v:
Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal’cev. :159-171
Autor:
P. F. Kurchanov, R. I. Grigorchuk
Publikováno v:
Mathematical Notes of the Academy of Sciences of the USSR. 48:736-742
Autor:
R I Grigorchuk
Publikováno v:
Mathematics of the USSR-Izvestiya. 34:517-553
A description is given of the topological types (of which there are six) of noncompact surfaces that can cover a closed surface in a regular fashion. For each of the six topological types, a computation is made of the number of equimorphic types of s
Autor:
R I Grigorchuk
Publikováno v:
Mathematics of the USSR-Sbornik. 66:211-229
A description is given of groups for which the coefficients of the Hilbert-Poincare series of the associated algebra have power growth. Examples of finitely generated -groups for which the growth of the coefficients of the Hilbert-Poincare series is