Zobrazeno 1 - 5
of 5
pro vyhledávání: '"R. I. Andrushkiw"'
Autor:
Mykola Prytula, Yu. O. Mitropolsky, Anatoliy K. Prykarpatsky, R. I. Andrushkiw, V. Hr. Samoilenko
Publikováno v:
Journal of Mathematical Physics. 35:1763-1777
The algebraic structure of the gradient‐holonomic algorithm for Lax integrable dynamical systems is discussed. A generalization of the R‐structure approach for the case of operator‐valued affine Lie algebras is used to prove the bi‐Hamiltonia
Publikováno v:
Journal of Mathematical Physics. 35:1532-1548
The procedure of geometric quantization is developed for completely integrable dynamical systems on manifolds with exact symplectic structure. These results are applied to Neumann’s nonharmonic oscillatory system on two‐dimensional sphere S2.
Autor:
R. I. Andrushkiw
Publikováno v:
Numerical Functional Analysis and Optimization. 6:197-212
A method is presented for generating a sequence of lower and upper bounds for the eigenvalues of the problem (i) Tu-λSu = 0, where T and S belong to a class of unbounded and nonsymmetric operators in a separable Hilbert space. Sufficient conditions
Autor:
T. K. Lakshmanan, R. I. Andrushkiw
Publikováno v:
Review of Scientific Instruments. 34:433-435
Publikováno v:
Scopus-Elsevier
The generalized theory of the R‐structure on affine operator Lie algebras is used to construct a complete theory of Lax integrable nonlinear dynamical systems in multidimensions. The operator bi‐Hamiltonian structures and their functional reducti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20b73bfdb6f930dc2e34fcca6ebd1a6a
http://www.scopus.com/inward/record.url?eid=2-s2.0-21344480280&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-21344480280&partnerID=MN8TOARS