Zobrazeno 1 - 10
of 23
pro vyhledávání: '"R. G. Nasibullin"'
Autor:
R. G. Nasibullin
Publikováno v:
Russian Mathematics. 66:46-78
Autor:
R. G. Nasibullin
Publikováno v:
Siberian Mathematical Journal. 63:1121-1139
Autor:
R. G. Nasibullin
Publikováno v:
Czechoslovak Mathematical Journal. 72:87-110
Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex d
Publikováno v:
Lobachevskii Journal of Mathematics. 41:2198-2210
This paper is devoted to weighted Hardy type inequalities. Using the Bessel functions, we prove one-dimensional inequalities and give some remarks on extensions of the one-dimensional inequalities to $$n$$ -dimensional convex domains with finite inne
Autor:
R. V. Makarov, R. G. Nasibullin
Publikováno v:
Siberian Mathematical Journal. 61:1102-1119
We study Hardy-type integral inequalities with remainder terms for smooth compactly-supported functions in convex domains of finite inner radius. New $ L_{1} $ - and $ L_{p} $ -inequalities are obtained with constants depending on the Lamb constant w
Autor:
R. G. Nasibullin, R. V. Makarov
Publikováno v:
Sibirskii matematicheskii zhurnal. 61:1377-1397
Autor:
R. G. Nasibullin, R. V. Makarov
Publikováno v:
Indagationes Mathematicae. 31:632-649
This paper is devoted to Hardy type inequalities with remainders for compactly supported smooth functions on open sets in the Euclidean space. We establish new inequalities with weight functions depending on the distance function to the boundary of t
Autor:
R. G. Nasibullin
Publikováno v:
Lobachevskii Journal of Mathematics. 40:1383-1396
Hardy type inequalities with an additional nonnegative-term are established for compactly supported smooth functions on arbitrary open subsets and on convex domains of the Euclidean space. We prove Hardy-type inequalities in spatial domains with fini
Autor:
R. G. Nasibullin
Publikováno v:
Journal of Mathematical Sciences. 241:448-457
New inequalities for fractional integrals of a function and its derivative are proved. Lower estimates of weighted norms of the derivative through fractional Riemann–Liouville integrals are obtained.
Autor:
R. G. Nasibullin
Publikováno v:
Mathematica Slovaca. 69:785-800
We obtained a version of Hardy-Rellich type inequality in a domain Ω ∈ ℝ n which involves the distance to the boundary, the diameter and the volume of Ω. Weight functions in the inequalities depend on the “mean-distance” function and on the