Zobrazeno 1 - 8
of 8
pro vyhledávání: '"R. G. E. Pinch"'
Autor:
R. G. E. Pinch
Publikováno v:
Mathematics of Computation. 60:841-845
The sequence of consecutive integer squares has constant second difference 2. We list every such sequence of squares containing a term less than 1000 2 {1000^2} .
Autor:
R. G. E. Pinch
Publikováno v:
Mathematics of Computation. 61:381
Publikováno v:
The American Mathematical Monthly. 97:240
Autor:
R. G. E. Pinch
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 96:25-38
In this paper we list the elliptic curves defined over Q √ − 1, Q√ −2 or Q√ − 3 which have good reduction away from 2. The possible invariants of such curves are given in Table 1, and their minimal equations in Tables 2, 3 and 4. These ex
Autor:
R. G. E. Pinch
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 103:35-46
In this paper we describe a method for finding integer solutions of simultaneous Pellian equations, that is, integer triples (x,y,z) satisfying equations of the formwhere the coefficientsa,b,c,d,fare integers and we assume thata,c, andacare not squar
Autor:
R. G. E. Pinch
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 97:63-68
For a ε R, we define a subset V of Rn to be a-convex if x, y ε V impliesClearly V is (1 — a)-convex iff it is a-convex: V is convex iff it is a-convex for all a ε [0, 1], and any set is 1-convex. We define the a-convex hull of V to be the inters
Autor:
R. G. E. Pinch
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 100:435-457
In this paper we continue the study of elliptic curves defined over a quadratic field with good reduction at primes not dividing 2 begun in [9] (referred to as I). We extend the results of I to show that such a curve must have a point of order 2 also
Autor:
R. G. E. Pinch
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 99:19-22
Bollobás and Erdös[1] have posed the problem:If a is irrational, show that for 1 ≤ i < j ≤ p the number of integers t with 1 ≤ t ≤ p such that {(t–i)2a} < d and {(t–j)2a} < d, 0 < d < 1, is d2p + o(p) uniformly in i, j.