Zobrazeno 1 - 10
of 123
pro vyhledávání: '"R. Ehrenberg"'
Autor:
John R. Ehrenberg
A comprehensive discussion and analysis of two and a half millennia of Western political theoryIn the absence of noble public goals, admired leaders, and compelling issues, many warn of a dangerous erosion of civil society, which includes families, r
Autor:
Megan M. Monsanto, Bingyan J. Wang, Zach R. Ehrenberg, Oscar Echeagaray, Kevin S. White, Roberto Alvarez, Kristina Fisher, Sharon Sengphanith, Alvin Muliono, Natalie A. Gude, Mark A. Sussman
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-20 (2020)
Despite recent progress to advance cardiac cell-based therapy for patients, heart failure mortality rivals most cancers. Here, the authors describe an approach to control and pattern 3 distinct human cardiac cell populations to promote superior repai
Externí odkaz:
https://doaj.org/article/d8965aba695e4b73854957d83edbac8e
Autor:
Megan M. Monsanto, Bingyan J. Wang, Kevin S. White, Natalie Gude, Mark A. Sussman, Roberto Alvarez, Zach R. Ehrenberg, Alvin Muliono, Kristina Fisher, Oscar Echeagaray, Sharon Sengphanith
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-20 (2020)
Nature Communications
Nature Communications
Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2da866586bcf9ee1b663fb86d1fa39c7
Publikováno v:
Advances in neural information processing systems. 30
Data augmentation is a ubiquitous technique for increasing the size of labeled training sets by leveraging task-specific data transformations that preserve class labels. While it is often easy for domain experts to specify individual transformations,
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
SIGMOD Conference
State-of-the art machine learning methods such as deep learning rely on large sets of hand-labeled training data. Collecting training data is prohibitively slow and expensive, especially when technical domain expertise is required; even the largest t
Autor:
Sen Wu, Stephen H. Bach, Alexander Ratner, Christopher Ré, Jason A. Fries, Henry R. Ehrenberg
Publikováno v:
The Vldb Journal
Labeling training data is increasingly the largest bottleneck in deploying machine learning systems. We present Snorkel, a first-of-its-kind system that enables users to train state-of-the-art models without hand labeling any training data. Instead,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38f3845d894a3794b305b441a7316cbe
Publikováno v:
HILDA@SIGMOD
Populating large-scale structured databases from unstructured sources is a critical and challenging task in data analytics. As automated feature engineering methods grow increasingly prevalent, constructing sufficiently large labeled training sets ha
Publikováno v:
Medical Imaging: Computer-Aided Diagnosis
Objectives: Advances in multiparametric magnetic resonance imaging (mpMRI) and ultrasound/MRI fusion imaging offer a powerful alternative to the typical undirected approach to diagnosing prostate cancer. However, these methods require the time and ex