Zobrazeno 1 - 10
of 31
pro vyhledávání: '"R. D. Mota"'
Effect of the two-parameter generalized Dunkl derivative on the two-dimensional Schrödinger equation
Autor:
R. D. Mota, D. Ojeda-Guillén
We introduce a generalization of the Dunkl-derivative with two parameters to study the Schr\"odinger equation in Cartesian and polar coordinates in two dimensions. The eigenfunctions and the energy spectrum for the harmonic oscillator and the Coulomb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::797c5e67a7eb9f64bf12546c19a3f617
We introduce an $SU(1,1)$ algebraic approach to study the $(2+1)$-Dirac oscillator in the presence of the Aharonov-Casher effect coupled to an external electromagnetic field in the Minkowski spacetime and the cosmic string spacetime. This approach is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47c1ff4a4b4a6a9edd7f88363e7015b1
http://arxiv.org/abs/2004.12459
http://arxiv.org/abs/2004.12459
In this paper we study the $(2+1)$-dimensional Klein-Gordon oscillator coupled to an external magnetic field, in which we change the standard partial derivatives for the Dunkl derivatives. We find the energy spectrum (Landau levels) in an algebraic w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30fb2f2e29abb4998658621686a05339
We introduce the Dunkl--Klein--Gordon (DKG) equation in 2D by changing the standard partial derivatives by the Dunkl derivatives in the standard Klein--Gordon (KG) equation. We show that the generalization with Dunkl derivative of the $z$-component o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::426c3ad23c4404620e141d05b0b3f28a
We extend the $(1+1)$-dimensional Dirac-Moshinsky oscillator by changing the standard derivative by the Dunkl derivative. We demonstrate in a general way that for the Dirac-Dunkl oscillator be parity invariant, one of the spinor component must be eve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04cca8853309cfd37eafc75490200519
Autor:
R. D. Mota, R. Cordero
We study the quantum cosmology of the 2D Hawking-Page massless scalar-field model and the homogeneous and isotropic dilation-axion string cosmology.For both models we find new exact solutions for the Wheeler-DeWitt equation and for the supersymmetric
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99c95ee703865f00d999cd48b52fa7a4
http://arxiv.org/abs/1905.03942
http://arxiv.org/abs/1905.03942
Publikováno v:
Journal of Nonlinear Mathematical Physics. 23:607
We study some properties of the $SU(1,1)$ Perelomov number coherent states. The Schr\"odinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent st
Publikováno v:
Annals of Physics. 372:283-296
We study a relativistic quantum particle in cosmic string spacetime in the presence of a uniform magnetic field and a Coulomb-type scalar potential. It is shown that the radial part of this problem possesses the $su(1,1)$ symmetry. We obtain the ener
Publikováno v:
Annals of Physics. 411:167964
In this paper we study the ( 2 + 1 ) -dimensional Dirac–Dunkl oscillator coupled to an external magnetic field. Our Hamiltonian is obtained from the standard Dirac oscillator coupled to an external magnetic field by changing the partial derivatives
Publikováno v:
Communications in Theoretical Physics. 64:34-38
From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new