Zobrazeno 1 - 10
of 18
pro vyhledávání: '"R. Díaz Millán"'
Autor:
R. Díaz Millán, Vera Roshchina
Publikováno v:
Set-Valued and Variational Analysis. 31
Publikováno v:
Optimization. 71:1171-1187
Publikováno v:
Journal of Global Optimization.
Publikováno v:
Computational Optimization and Applications. 80:245-269
The classical convex feasibility problem in a finite dimensional Euclidean space consists of finding a point in the intersection of two convex sets. In the present paper we are interested in two particular instances of this problem. First, we assume
Autor:
M. Pentón Machado, R. Díaz Millán
Publikováno v:
Journal of Global Optimization. 75:1029-1060
We present two approximate versions of the proximal subgradient method for minimizing the sum of two convex functions (not necessarily differentiable). At each iteration, the algorithms require inexact evaluations of the proximal operator, as well as
The motivation of this paper is the development of an optimisation method for solving optimisation problems appearing in Chebyshev rational and generalised rational approximation problems, where the approximations are constructed as ratios of linear
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7835204ce17115917f1c63f94c773dde
http://arxiv.org/abs/2011.02721
http://arxiv.org/abs/2011.02721
Autor:
Regina S. Burachik, R. Díaz Millán
We introduce a projection-type algorithm for solving the variational inequality problem for point-to-set operators, and establish its convergence properties. Namely, we assume that the operator of the variational inequality is continuous in the point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::062b8f6f8f85851495654722f233e80a
https://hdl.handle.net/11541.2/138299
https://hdl.handle.net/11541.2/138299
Autor:
J. Y. Cruz, R. Díaz Millán
Publikováno v:
Journal of Global Optimization. 65:597-614
We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex functio
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
J. Y. Bello Cruz, R. Díaz Millán
Publikováno v:
Optimization. 64:1471-1486
In this paper, we propose variants of Forward-Backward splitting method for finding a zero of the sum of two operators. A classical modification of Forward-Backward method was proposed by Tseng, which is known to converge when the forward and the bac