Zobrazeno 1 - 10
of 22
pro vyhledávání: '"R. C. Budzinski"'
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
Abstract Extracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-dimensional systems is a challenge of complex systems research. Open questions are how to differentiate chaotic signals from stochastic ones, an
Externí odkaz:
https://doaj.org/article/0920618b54bc4a88b32fead71a4318e4
Publikováno v:
Physical Review Research, Vol 2, Iss 4, p 043309 (2020)
We investigate the synchronization features of a network of spiking neurons under a distance-dependent coupling following a power-law model. The interplay between topology and coupling strength leads to the existence of different spatiotemporal patte
Externí odkaz:
https://doaj.org/article/4b9633025d474a21a72c1bed6b33fe10
Publikováno v:
Physics of Life Reviews. 36:68-70
Autor:
Sergio Roberto Lopes, Cristina Masoller, R. C. Budzinski, T. L. Prado, B. R. R. Boaretto, K. L. Rossi
Publikováno v:
Entropy
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Volume 23
Issue 8
Entropy, Vol 23, Iss 1025, p 1025 (2021)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Volume 23
Issue 8
Entropy, Vol 23, Iss 1025, p 1025 (2021)
Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We
Autor:
Cristina Masoller, R. C. Budzinski, K. L. Rossi, Sergio Roberto Lopes, T. L. Prado, B. R. R. Boaretto
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Extracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-dimensional systems is a challenge of complex systems research. Open questions are how to differentiate chaotic signals from stochastic ones, and how to
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 75:140-151
We investigate the dynamical properties of two coupled neural networks with 2,048 identical Hodgkin--Huxley type bursting neurons. The internal connection architecture of each network follows a small-world topology and the external connection scheme
Publikováno v:
Chaos, Solitons & Fractals. 123:35-42
We simulate a small-world neural network composed of 2000 thermally sensitive identical Hodgkin–Huxley type neurons investigating the synchronization characteristics as a function of the coupling strength and the temperature of the neurons. The Kur
Autor:
Ulrike Feudel, K. L. Rossi, T. L. Prado, Cesar Manchein, R. C. Budzinski, Sergio Roberto Lopes, B. R. R. Boaretto
Publikováno v:
Physical review. E. 104(2-1)
We investigate the role of bistability in the synchronization of a network of identical bursting neurons coupled through an generic electrical mean-field scheme. These neurons can exhibit distinct multistable states and, in particular, bistable behav
Autor:
Elbert E. N. Macau, T. L. Prado, Fabiano A. S. Ferrari, G. Z. dos Santos Lima, Sergio Roberto Lopes, B. R. R. Boaretto, Gilberto Corso, R. C. Budzinski
Publikováno v:
Chaos (Woodbury, N.Y.). 30(4)
The recurrence analysis of dynamic systems has been studied since Poincare’s seminal work. Since then, several approaches have been developed to study recurrence properties in nonlinear dynamical systems. In this work, we study the recently develop
Publikováno v:
Chaos (Woodbury, N.Y.). 29(12)
The connection architecture plays an important role in the synchronization of networks, where the presence of local and nonlocal connection structures are found in many systems, such as the neural ones. Here, we consider a network composed of chaotic