Zobrazeno 1 - 10
of 39
pro vyhledávání: '"R S, Varga"'
Autor:
E. B. Saff, R. S. Varga
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 1, Iss 4, Pp 407-420 (1978)
For any θ with 0
Externí odkaz:
https://doaj.org/article/360548e990c84be295ea490da5f6f44a
Publikováno v:
Molecular Crystals and Liquid Crystals. 199:429-452
In order to study the structure of defects in nematic liquid crystals, we have constructed a numerical procedure that minimizes the Landau-de Gennes free energy model. Using a new representation, a finite-element discretization, and a direct minimiza
Autor:
E. B. Saff, R. S. Varga
Publikováno v:
Numerische Mathematik. 26:345-354
Autor:
D.-Y. Cai, R. S. Varga
Publikováno v:
SIAM Journal on Algebraic Discrete Methods. 3:250-259
An $n \times n$M-matrix A is said to admit an $LU$ factorization into $n \times n$M-matrices if A can be expressed as $A = LU$ where L is an $n \times n$ lower triangular M-matrix and where U is an upper triangular M-matrix. Then, for any given $n \t
Autor:
E. B. Saff, R. S. Varga
Publikováno v:
Numerische Mathematik. 25:1-14
Publikováno v:
Numerische Mathematik. 52:483-497
Publikováno v:
Numerische Mathematik. 25:307-322
Publikováno v:
Transactions of the American Mathematical Society. 259:621-628
Consider, as nodes for polynomial interpolation, the nth roots of unity. For a sufficiently smooth function f ( z ) f(z) , we require a polynomial p ( z ) p(z) to interpolate f and certain of its derivatives at each node. It is shown that the so-call
Publikováno v:
Transactions of the American Mathematical Society. 249:159-162
If r n {r_n} and s n {s_n} denote, respectively, the smallest and largest zeros of the Jacobi polynomial P n ( α n , β n ) P_n^{({\alpha _n},{\beta _n})} , where α n > 1 {\alpha _n}\, > \,1 , β n − 1 {\beta _n}\, - \,1 , and if lim n → ∞ α