Zobrazeno 1 - 10
of 71
pro vyhledávání: '"R Pfohl"'
Autor:
Lin Lawrence Guo, Ethan Steinberg, Scott Lanyon Fleming, Jose Posada, Joshua Lemmon, Stephen R. Pfohl, Nigam Shah, Jason Fries, Lillian Sung
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Abstract Temporal distribution shift negatively impacts the performance of clinical prediction models over time. Pretraining foundation models using self-supervised learning on electronic health records (EHR) may be effective in acquiring informative
Externí odkaz:
https://doaj.org/article/9e28a0f17b57475b806f0414f5e07a6e
Autor:
Chongliang Luo, Md. Nazmul Islam, Natalie E. Sheils, John Buresh, Jenna Reps, Martijn J. Schuemie, Patrick B. Ryan, Mackenzie Edmondson, Rui Duan, Jiayi Tong, Arielle Marks-Anglin, Jiang Bian, Zhaoyi Chen, Talita Duarte-Salles, Sergio Fernández-Bertolín, Thomas Falconer, Chungsoo Kim, Rae Woong Park, Stephen R. Pfohl, Nigam H. Shah, Andrew E. Williams, Hua Xu, Yujia Zhou, Ebbing Lautenbach, Jalpa A. Doshi, Rachel M. Werner, David A. Asch, Yong Chen
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
A lossless, one-shot and privacy-preserving distributed algorithm was revealed for fitting linear mixed models on multi-site data. The algorithm was applied to a study of 120,609 COVID-19 patients using only minimal aggregated data from each of 14 si
Externí odkaz:
https://doaj.org/article/c7bac154e8d74bfa915f9fc9df810e06
Autor:
Lin Lawrence Guo, Stephen R. Pfohl, Jason Fries, Alistair E. W. Johnson, Jose Posada, Catherine Aftandilian, Nigam Shah, Lillian Sung
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Abstract Temporal dataset shift associated with changes in healthcare over time is a barrier to deploying machine learning-based clinical decision support systems. Algorithms that learn robust models by estimating invariant properties across time per
Externí odkaz:
https://doaj.org/article/d2a984b41a95432ca8ec87e3d320e5f3
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
Abstract Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training a
Externí odkaz:
https://doaj.org/article/fda27130ef244a6883cdd2c20bc91693
Autor:
Anastasiya Nestsiarovich, Jenna M. Reps, Michael E. Matheny, Scott L. DuVall, Kristine E. Lynch, Maura Beaton, Xinzhuo Jiang, Matthew Spotnitz, Stephen R. Pfohl, Nigam H. Shah, Carmen Olga Torre, Christian G. Reich, Dong Yun Lee, Sang Joon Son, Seng Chan You, Rae Woong Park, Patrick B. Ryan, Christophe G. Lambert
Publikováno v:
Translational Psychiatry, Vol 11, Iss 1, Pp 1-8 (2021)
Abstract Many patients with bipolar disorder (BD) are initially misdiagnosed with major depressive disorder (MDD) and are treated with antidepressants, whose potential iatrogenic effects are widely discussed. It is unknown whether MDD is a comorbidit
Externí odkaz:
https://doaj.org/article/c4de8fea768b435d9121377e5657d19c
Publikováno v:
BMJ Health & Care Informatics, Vol 29, Iss 1 (2022)
Externí odkaz:
https://doaj.org/article/31f9809a800646e4825c8bc3be2f668c
Autor:
Joshua Lemmon, Lin Lawrence Guo, Jose Posada, Stephen R. Pfohl, Jason Fries, Scott Lanyon Fleming, Catherine Aftandilian, Nigam Shah, Lillian Sung
Publikováno v:
Methods of Information in Medicine. 62:060-070
Background Temporal dataset shift can cause degradation in model performance as discrepancies between training and deployment data grow over time. The primary objective was to determine whether parsimonious models produced by specific feature selecti
Autor:
Qiong Wang, Jenna M Reps, Kristin Feeney Kostka, Patrick B Ryan, Yuhui Zou, Erica A Voss, Peter R Rijnbeek, RuiJun Chen, Gowtham A Rao, Henry Morgan Stewart, Andrew E Williams, Ross D Williams, Mui Van Zandt, Thomas Falconer, Margarita Fernandez-Chas, Rohit Vashisht, Stephen R Pfohl, Nigam H Shah, Suranga N Kasthurirathne, Seng Chan You, Qing Jiang, Christian Reich, Yi Zhou
Publikováno v:
PLoS ONE, Vol 15, Iss 1, p e0226718 (2020)
Background and purposeHemorrhagic transformation (HT) after cerebral infarction is a complex and multifactorial phenomenon in the acute stage of ischemic stroke, and often results in a poor prognosis. Thus, identifying risk factors and making an earl
Externí odkaz:
https://doaj.org/article/ea94bcef884c441dbcc5be20f2839388
Publikováno v:
Frontiers in Neuroinformatics, Vol 12 (2018)
Objective: The heterogeneity of amyotrophic lateral sclerosis (ALS) survival duration, which varies from 10 years, challenges clinical decisions and trials. Utilizing data from 801 deceased ALS patients, we: (1) assess the underlying complex relation
Externí odkaz:
https://doaj.org/article/6212ff1fe2c54ae1ae1679f2ca2ffc93
Autor:
Shaswath Ganapathi, Jo Palmer, Joseph E. Alderman, Melanie Calvert, Cyrus Espinoza, Jacqui Gath, Marzyeh Ghassemi, Katherine Heller, Francis Mckay, Alan Karthikesalingam, Stephanie Kuku, Maxine Mackintosh, Sinduja Manohar, Bilal A. Mateen, Rubeta Matin, Melissa McCradden, Lauren Oakden-Rayner, Johan Ordish, Russell Pearson, Stephen R. Pfohl, Negar Rostamzadeh, Elizabeth Sapey, Neil Sebire, Viknesh Sounderajah, Charlotte Summers, Darren Treanor, Alastair K. Denniston, Xiaoxuan Liu
Publikováno v:
Nature Medicine. 28:2232-2233