Zobrazeno 1 - 10
of 870
pro vyhledávání: '"RĂDULESCU, VICENŢIU D."'
In this work, we introduce two novel classes of quasilinear elliptic equations, each driven by the double phase operator with variable exponents. The first class features a new double phase equation where exponents depend on the gradient of the solut
Externí odkaz:
http://arxiv.org/abs/2409.16662
We consider a wide class of fully nonlinear integro-differential equations that degenerate when the gradient of the solution vanishes. By using compactness and perturbation arguments, we give a complete characterization of the regularity of viscosity
Externí odkaz:
http://arxiv.org/abs/2408.15559
Autor:
Gou, Tianxiang, Radulescu, Vicentiu D.
In this paper, we establish the uniqueness of positive solutions to the following fractional nonlinear elliptic equation with harmonic potential \begin{align*} (-\Delta)^s u+ \left(\omega+|x|^2\right) u=|u|^{p-2}u \quad \mbox{in}\,\, \R^n, \end{align
Externí odkaz:
http://arxiv.org/abs/2407.10126
In this paper, we consider blow-up of solutions to the Cauchy problem for the following fractional NLS, $$ \textnormal{i} \, \partial_t u=(-\Delta)^s u-|u|^{2 \sigma} u \quad \text{in} \,\, \R \times \R^N, $$ where $N \geq 2$, $1/2
Externí odkaz:
http://arxiv.org/abs/2406.03842
Autor:
Zeng, Shengda, Rădulescu, Vicenţiu D.
In this paper, we consider a new kind of evolution multivalued quasi-variational inequalities with feedback effect and a nonlinear bifunction which contain several (evolution) quasi-variational/hemivariational inequalities as special cases. The main
Externí odkaz:
http://arxiv.org/abs/2405.17810
We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in
Externí odkaz:
http://arxiv.org/abs/2310.06325
In this paper, we study the following logarithmic Schr\"{o}dinger equation \[ -\Delta u+\lambda a(x)u=u\log u^2\ \ \ \ \mbox{ in }V \] on a connected locally finite graph $G=(V,E)$, where $\Delta$ denotes the graph Laplacian, $\lambda > 0$ is a const
Externí odkaz:
http://arxiv.org/abs/2306.13842
Publikováno v:
Topol. Methods Nonlinear Anal. 61:1 (2023), str. 393-422
We consider a Neumann boundary value problem driven by the anisotropic $(p,q)$-Laplacian plus a parametric potential term. The reaction is ``superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. A
Externí odkaz:
http://arxiv.org/abs/2305.01037
Autor:
Gou, Tianxiang, Radulescu, Vicentiu D.
In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight, $$ -\Delta_p^a u-\Delta_q u =\lambda m(x) |u|^{q-2}u \quad \mbox{in} \,\, \R^N, $$ where {$N \geq 2$}, {$1
Externí odkaz:
http://arxiv.org/abs/2302.13077