Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Rühmann, Tim"'
We consider infinite connected quasi-transitive locally finite graphs and show that every such graph with more than one end is a tree amalgamation of two other such graphs. This can be seen as a graph-theoretical version of Stallings' splitting theor
Externí odkaz:
http://arxiv.org/abs/1812.06312
Autor:
Miraftab, Babak, Rühmann, Tim
The well-known characterization of two-ended groups says that every two-ended group can be split over finite subgroups which means it is isomorphic to either by a free product with amalgamation $A\ast_C B$ or an HNN-extension $\ast_{\phi} C$, where $
Externí odkaz:
http://arxiv.org/abs/1812.04866
Publikováno v:
In Journal of Combinatorial Theory, Series B November 2022 157:40-69
Autor:
Miraftab, Babak, Rühmann, Tim
For locally finite infinite graphs the notion of Hamilton cycles can be extended to Hamilton circles, homeomorphic images of $S^1$ in the Freudenthal compactification. In this paper we extend some well-known theorems of the Hamiltonicity of finite Ca
Externí odkaz:
http://arxiv.org/abs/1708.03476
Autor:
Miraftab, Babak, Rühmann, Tim
For locally finite infinite graphs the notion of Hamilton cycles can be extended to Hamilton circles, homeomorphic images of $S^1$ in the Freudenthal compactification. In this paper we prove of a sufficient condition for the existence of Hamilton cir
Externí odkaz:
http://arxiv.org/abs/1609.01119
Autor:
Miraftab, Babak, Rühmann, Tim
Publikováno v:
Discrete Mathematics, Algorithms & Applications; Oct2022, Vol. 14 Issue 7, p1-17, 17p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.