Zobrazeno 1 - 10
of 224
pro vyhledávání: '"Rüdiger W. Braun"'
Publikováno v:
Annales de la Faculté des sciences de Toulouse : Mathématiques. 20:71-99
Publikováno v:
Canadian Journal of Mathematics. 60:33-63
Let V be an analytic variety in some open set in ℂn. For a real analytic curve γ with γ(0) = 0 and d ≥ 1, define Vt = t−d(V − γ(t)). It was shown in a previous paper that the currents of integration over Vt converge to a limit current whos
Publikováno v:
Mathematische Zeitschrift. 253:387-417
Let V be an algebraic variety in Open image in new window. We say that V satisfies the strong Phragmen-Lindelof property (SPL) or that the classical Phragmen-Lindelof Theorem holds on V if the following is true: There exists a positive constant A suc
Publikováno v:
Annales Polonici Mathematici. 88:83-95
For algebraic surfaces, several global Phragmen-Lindelof conditions are characterized in terms of conditions on their limit varieties. This shows that the hyper- bolicity conditions that appeared in earlier geometric characterizations are redundant.
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2005:169-220
Publikováno v:
Pacific Journal of Mathematics. 212:25-48
Let P m be a homogeneous polynomial of degree m in n > 2 variables for which the associated partial differential operator P m (D) admits a continuous linear right inverse on C∞(R n ). Examples suggest that then for each polynomial Q of degree less
Publikováno v:
Transactions of the American Mathematical Society. 356:1315-1383
The local Phragmen-Lindelof condition for analytic subvarieties of C n at real points plays a crucial role in complex analysis and in the theory of constant coefficient partial differential operators, as Hormander has shown. Here, necessary geometric
Publikováno v:
Canadian Journal of Mathematics. 55:64-90
Let V be an analytic variety in some open set in which contains the origin and which is purely k-dimensional. For a curve γ in , defined by a convergent Puiseux series and satisfying γ(0) = 0, and d ≥ 1, define Vt := t−d(V − (t)). Then the cu
Publikováno v:
Proceedings of the American Mathematical Society. 131:2423-2433
We give a sufficient condition for a local radial Phragmen-Lindelof principle on analytic varieties. This condition is expressed in terms of existence of hyperbolic directions.
Publikováno v:
Pacific Journal of Mathematics. 192:201-218