Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Rémi Rhodes"'
Publikováno v:
Journal of High Energy Physics, Vol 2018, Iss 5, Pp 1-24 (2018)
Abstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the
Externí odkaz:
https://doaj.org/article/80425bd2fb4a42e8a988775f29622ebc
Publikováno v:
Probability Theory and Related Fields. 185:1-40
Publikováno v:
Acta Mathematica
Acta Mathematica, In press
HAL
Acta Mathematica, In press
HAL
The conformal bootstrap hypothesis is a powerful idea in theoretical physics which has led to spectacular predictions in the context of critical phenomena. It postulates an explicit expression for the correlation functions of a conformal field theory
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58ecfcc37c651ca7e93e4345ef8ea498
https://hal.science/hal-02866510v2/document
https://hal.science/hal-02866510v2/document
Autor:
Rémi Rhodes, Vincent Vargas
Publikováno v:
Comptes Rendus Physique
Comptes Rendus Physique, 2020, 21 (6), pp.561-569. ⟨10.5802/crphys.43⟩
Comptes Rendus Physique, 2020, 21 (6), pp.561-569. ⟨10.5802/crphys.43⟩
International audience; In this article, we present the Liouville field theory, which was introduced in the eighties in physics by Polyakov as a model for fluctuating metrics in 2D quantum gravity, and outline recent mathematical progress in its stud
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2db84d5813dfe4cb39b88b37be0b4d62
https://hal.archives-ouvertes.fr/hal-03150550
https://hal.archives-ouvertes.fr/hal-03150550
Publikováno v:
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2019, 20 (11), pp.3693-3741. ⟨10.1007/s00023-019-00842-y⟩
Annales Henri Poincaré, 2019, 20 (11), pp.3693-3741. ⟨10.1007/s00023-019-00842-y⟩
Annales Henri Poincaré, Springer Verlag, 2019, 20 (11), pp.3693-3741. ⟨10.1007/s00023-019-00842-y⟩
Annales Henri Poincaré, 2019, 20 (11), pp.3693-3741. ⟨10.1007/s00023-019-00842-y⟩
We construct, for the first time to our knowledge, a one-dimensional stochastic field $$\{u(x)\}_{x\in \mathbb {R}}$$ which satisfies the following axioms which are at the core of the phenomenology of turbulence mainly due to Kolmogorov: Since then,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b143a4d40bca2cd85074976d4b672143
https://hal.archives-ouvertes.fr/hal-02332759
https://hal.archives-ouvertes.fr/hal-02332759
Autor:
Vincent Vargas, Rémi Rhodes
Publikováno v:
Annals of Probability
Annals of Probability, Institute of Mathematical Statistics, 2019, 47 (5), pp.3082-3107
Annals of Probability, 2019, 47 (5), pp.3082-3107
Ann. Probab. 47, no. 5 (2019), 3082-3107
Annals of Probability, Institute of Mathematical Statistics, 2019, 47 (5), pp.3082-3107
Annals of Probability, 2019, 47 (5), pp.3082-3107
Ann. Probab. 47, no. 5 (2019), 3082-3107
In this short note, we derive a precise tail expansion for Gaussian multiplicative chaos (GMC) associated to the 2d GFF on the unit disk with zero average on the unit circle (and variants). More specifically, we show that to first order the tail is a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab24ff68dd41d4ccfde9de3b48514b0a
https://hal.archives-ouvertes.fr/hal-03018799/file/Tail-short_revisionAOP_finalversion.pdf
https://hal.archives-ouvertes.fr/hal-03018799/file/Tail-short_revisionAOP_finalversion.pdf
Publikováno v:
Publications mathématiques de lIHÉS
Publications mathématiques de l'IHÉS
Publications mathématiques de l'IHÉS
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018
Ann. Inst. H. Poincaré Probab. Statist. 54, no. 3 (2018), 1694-1730
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2018
Ann. Inst. H. Poincaré Probab. Statist. 54, no. 3 (2018), 1694-1730
Notre but est d’etendre la construction rigoureuse de la Theorie Quantique des Champs de Liouville sur les surfaces de Riemann, initiee par F. David, A. Kupiainen et les deux derniers auteurs dans le contexte de la sphere de Riemann et inspiree par
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3801ebb8cd416703df1ee866d2c51548
https://hal.archives-ouvertes.fr/hal-01161631
https://hal.archives-ouvertes.fr/hal-01161631
Publikováno v:
Journal of High Energy Physics
Journal of High Energy Physics, Springer, 2018, 05, pp.094. ⟨10.1007/JHEP05(2018)094⟩
JHEP
JHEP, 2018, 05, pp.094. ⟨10.1007/JHEP05(2018)094⟩
Journal of High Energy Physics, Vol 2018, Iss 5, Pp 1-24 (2018)
JHEP, 2018, 05, pp.094. 〈10.1007/JHEP05(2018)094〉
Journal of High Energy Physics, Springer, 2018, 05, pp.094. ⟨10.1007/JHEP05(2018)094⟩
JHEP
JHEP, 2018, 05, pp.094. ⟨10.1007/JHEP05(2018)094⟩
Journal of High Energy Physics, Vol 2018, Iss 5, Pp 1-24 (2018)
JHEP, 2018, 05, pp.094. 〈10.1007/JHEP05(2018)094〉
We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functiona
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3be896afc28347607e4e6489b9143531
https://hal.archives-ouvertes.fr/hal-01758101
https://hal.archives-ouvertes.fr/hal-01758101
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2018
Commun.Math.Phys.
Commun.Math.Phys., 2019, 371 (3), pp.1005-1069. ⟨10.1007/s00220-018-3260-3⟩
Communications in Mathematical Physics, Springer Verlag, 2018
Commun.Math.Phys.
Commun.Math.Phys., 2019, 371 (3), pp.1005-1069. ⟨10.1007/s00220-018-3260-3⟩
Liouville Conformal Field Theory (LCFT) is an essential building block of Polyakov's formulation of non critical string theory. Moreover, scaling limits of statistical mechanics models on planar maps are believed by physicists to be described by LCFT