Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Régis Lengellé"'
Autor:
Bruno H. Muller, Régis Lengellé
Publikováno v:
Sensors, Vol 23, Iss 7, p 3743 (2023)
In this paper, we propose a sparse decomposition of the heart rate during sleep with an application to apnoea–RERA detection. We observed that the tachycardia following an apnoea event has a quasi-deterministic shape with a random amplitude. Accord
Externí odkaz:
https://doaj.org/article/cef6fd44bd204e2195f4efb425ea4202
Autor:
Bruno Muller, Régis Lengellé
Publikováno v:
Computer Methods and Programs in Biomedicine. 208:106280
Background and objectives: while traditional sleep staging is achieved through the visual - expert-based - annotation of a polysomnography, it has the disadvantages of being unpractical and expensive. Alternatives have been developed over the years t
Autor:
Xiaoyi Chen, Régis Lengellé
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319936468
ICPRAM (Revised Selected Papers)
Lecture Notes In Computer Science
6th International Pattern Recognition Applications and Methods Conference, ICPRAM 2017
De Marsico M., di Baja G., Fred A. Lecture Notes In Computer Science, 10857, pp.45-61, 2018, ⟨10.1007/978-3-319-93647-5_3⟩
ICPRAM (Revised Selected Papers)
Lecture Notes In Computer Science
6th International Pattern Recognition Applications and Methods Conference, ICPRAM 2017
De Marsico M., di Baja G., Fred A. Lecture Notes In Computer Science, 10857, pp.45-61, 2018, ⟨10.1007/978-3-319-93647-5_3⟩
International audience; Domain adaptation, where no labeled target data is available, is a challenging task. To solve this problem, we first propose a new SVM based approach with a supplementary MaximumMean Discrepancy (MMD)-like constraint. With thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fb1461a5c9b440f0c04967d536cfa4e
https://doi.org/10.1007/978-3-319-93647-5_3
https://doi.org/10.1007/978-3-319-93647-5_3
Publikováno v:
International Journal of Adaptive Control and Signal Processing. 29:1391-1410
Summary Nonlinear adaptive filtering has been extensively studied in the literature, using, for example, Volterra filters or neural networks. Recently, kernel methods have been offering an interesting alternative because they provide a simple extensi
Autor:
Xiaoyi Chen, Régis Lengellé
Publikováno v:
ICPRAM
Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2017
6th International Conference on Pattern Recognition Applications and Methods
6th International Conference on Pattern Recognition Applications and Methods, Feb 2017, Porto, Portugal. pp.89-95, ⟨10.5220/0006119900890095⟩
Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2017
6th International Conference on Pattern Recognition Applications and Methods
6th International Conference on Pattern Recognition Applications and Methods, Feb 2017, Porto, Portugal. pp.89-95, ⟨10.5220/0006119900890095⟩
International audience; This paper is a contribution to solving the domain adaptation problem where no labeled target data is available. A new SVM approach is proposed by imposing a zero-valued Maximum Mean Discrepancy-like constraint. This heuristic
Publikováno v:
IFAC World Congress, July 2008
IFAC World Congress, July 2008, Jul 2008, Seoul, South Korea. pp.7104-7109, ⟨10.3182/20080706-5-KR-1001.01204⟩
IFAC World Congress, July 2008, Jul 2008, Seoul, South Korea. pp.7104-7109, ⟨10.3182/20080706-5-KR-1001.01204⟩
It is a very challenging task to measure longitudinal slip of a tire on road surface in normal driving conditions, because of the very small value of the slip (a few 1/1000). This paper presents an industrially deployable method for Tire-Road Frictio
Publikováno v:
Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods, ICPRAM 2014
International Conference on Pattern Recognition Applications and Methods
International Conference on Pattern Recognition Applications and Methods, Mar 2014, Angers, France. pp.255-262, ⟨10.5220/0004828202550262⟩
International Conference on Pattern Recognition Applications and Methods
International Conference on Pattern Recognition Applications and Methods, Mar 2014, Angers, France. pp.255-262, ⟨10.5220/0004828202550262⟩
Clustering algorithms, as unsupervised analysis tools, are useful for exploring data structure and have owned great success in many disciplines. For most of the clustering algorithms like k-means, determining the number of the clusters is a crucial s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b0eff68728e98af2220d08fb316a24c
https://hal-utt.archives-ouvertes.fr/hal-02861450
https://hal-utt.archives-ouvertes.fr/hal-02861450
Autor:
Régis Lengellé, Cedric Richard
Publikováno v:
Signal Processing
Signal Processing, Elsevier, 1999, 77 (1), pp.37-48. ⟨10.1016/S0165-1684(99)00021-3⟩
Signal Processing, 1999, 77 (1), pp.37-48. ⟨10.1016/S0165-1684(99)00021-3⟩
Signal Processing, Elsevier, 1999, 77 (1), pp.37-48. ⟨10.1016/S0165-1684(99)00021-3⟩
Signal Processing, 1999, 77 (1), pp.37-48. ⟨10.1016/S0165-1684(99)00021-3⟩
International audience; In diesem Artikel stellen wir eine Methode zum Entwurf optimaler Zeit–Frequenz-Detektoren aufgrund von Trainingsdaten vor. Diese Methode ist potentiell von großem Nutzen, wenn wenig A-priori-Informationüber das zu detektie
Autor:
Ibtissam Constantin, Régis Lengellé
Publikováno v:
2013 25th International Conference on Microelectronics (ICM)
2013 25th International Conference on Microelectronics (ICM), Dec 2013, Beirut, Lebanon. pp.1-4, ⟨10.1109/ICM.2013.6734965⟩
2013 25th International Conference on Microelectronics (ICM), Dec 2013, Beirut, Lebanon. pp.1-4, ⟨10.1109/ICM.2013.6734965⟩
International audience; The design of adaptive nonlinear filters has sparked a great interest in the machine learning community. The present paper aims to present some recent developments in nonlinear adaptive filtering. We present an in-depth analys
Autor:
Régis Lengellé, Ibtissam Constantin
Publikováno v:
Complex Adaptive Systems 2013
Complex Adaptive Systems 2013, Nov 2013, Baltimore, United States. pp.39-45, ⟨10.1016/j.procs.2013.09.236⟩
Complex Adaptive Systems
Complex Adaptive Systems 2013, Nov 2013, Baltimore, United States. pp.39-45, ⟨10.1016/j.procs.2013.09.236⟩
Complex Adaptive Systems
International audience; The design of adaptive nonlinear filters has sparked a great interest in the machine learning community. The present paper aims to present some recent developments in nonlinear adaptive filtering. It provides an in-depth analy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6bb0d60cc2663b67c07ad25ee9754bb
https://utt.hal.science/hal-02861452
https://utt.hal.science/hal-02861452