Zobrazeno 1 - 5
of 5
pro vyhledávání: '"R, Sankar T."'
We represent and classify pairs of commuting isometries $(V_1, V_2)$ acting on Hilbert spaces that satisfy the condition \[ [V_1^*, V_2] = \text{compact} + \text{normal}, \] where $[V_1^*, V_2] := V_1^* V_2 - V_2 V_1^*$ is the cross-commutator of $(V
Externí odkaz:
http://arxiv.org/abs/2401.10807
Autor:
Maji, Amit, R, Sankar T
We obtain a complete characterization for doubly commuting mixed invariant subspaces of the Hardy space over the unit polydisc. We say a closed subspace $\mathcal{Q}$ of $H^2(\mathbb{D}^n)$ is mixed invariant if $M_{z_{j}}(\mathcal{Q}) \subseteq \mat
Externí odkaz:
http://arxiv.org/abs/2103.17102
It is known that the non-zero part of compact defect operators of Berger-Coburn-Lebow pairs (BCL pairs in short) of isometries are diagonal operators of the form \[ \begin{bmatrix} I_1 & & & \\ & D & & \\ & & - I_2 & \\ & & & - D \\ \end{bmatrix}, \]
Externí odkaz:
http://arxiv.org/abs/2008.12322
We give a complete characterization of invariant subspaces for $(M_{z_1}, \ldots, M_{z_n})$ on the Hardy space $H^2(\mathbb{D}^n)$ over the unit polydisc $\mathbb{D}^n$ in $\mathbb{C}^n$, $n >1$. In particular, this yields a complete set of unitary i
Externí odkaz:
http://arxiv.org/abs/1710.09853
We present an explicit version of Berger, Coburn and Lebow's classification result for pure pairs of commuting isometries in the sense of an explicit recipe for constructing pairs of commuting isometric multipliers with precise coefficients. We descr
Externí odkaz:
http://arxiv.org/abs/1708.02609