Zobrazeno 1 - 10
of 34
pro vyhledávání: '"R, CHANNING"'
Autor:
Moore, R. Channing, Ellis, Daniel P. W., Fonseca, Eduardo, Hershey, Shawn, Jansen, Aren, Plakal, Manoj
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5
Machine learning from training data with a skewed distribution of examples per class can lead to models that favor performance on common classes at the expense of performance on rare ones. AudioSet has a very wide range of priors over its 527 sound e
Externí odkaz:
http://arxiv.org/abs/2307.00079
Autor:
Hershey, Shawn, Ellis, Daniel P W, Fonseca, Eduardo, Jansen, Aren, Liu, Caroline, Moore, R Channing, Plakal, Manoj
To reveal the importance of temporal precision in ground truth audio event labels, we collected precise (~0.1 sec resolution) "strong" labels for a portion of the AudioSet dataset. We devised a temporally strong evaluation set (including explicit neg
Externí odkaz:
http://arxiv.org/abs/2105.07031
Autor:
Fonseca, Eduardo, Jansen, Aren, Ellis, Daniel P. W., Wisdom, Scott, Tagliasacchi, Marco, Hershey, John R., Plakal, Manoj, Hershey, Shawn, Moore, R. Channing, Serra, Xavier
Real-world sound scenes consist of time-varying collections of sound sources, each generating characteristic sound events that are mixed together in audio recordings. The association of these constituent sound events with their mixture and each other
Externí odkaz:
http://arxiv.org/abs/2105.02132
Autor:
Fonseca, Eduardo, Hershey, Shawn, Plakal, Manoj, Ellis, Daniel P. W., Jansen, Aren, Moore, R. Channing, Serra, Xavier
Publikováno v:
IEEE Signal Processing Letters, Vol. 27, 2020, pages 1235-1239
The study of label noise in sound event recognition has recently gained attention with the advent of larger and noisier datasets. This work addresses the problem of missing labels, one of the big weaknesses of large audio datasets, and one of the mos
Externí odkaz:
http://arxiv.org/abs/2005.00878
Autor:
Jansen, Aren, Ellis, Daniel P. W., Hershey, Shawn, Moore, R. Channing, Plakal, Manoj, Popat, Ashok C., Saurous, Rif A.
Humans do not acquire perceptual abilities in the way we train machines. While machine learning algorithms typically operate on large collections of randomly-chosen, explicitly-labeled examples, human acquisition relies more heavily on multimodal uns
Externí odkaz:
http://arxiv.org/abs/1911.05894
Autor:
Jansen, Aren, Plakal, Manoj, Pandya, Ratheet, Ellis, Daniel P. W., Hershey, Shawn, Liu, Jiayang, Moore, R. Channing, Saurous, Rif A.
Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabel
Externí odkaz:
http://arxiv.org/abs/1711.02209
Autor:
Hershey, Shawn, Chaudhuri, Sourish, Ellis, Daniel P. W., Gemmeke, Jort F., Jansen, Aren, Moore, R. Channing, Plakal, Manoj, Platt, Devin, Saurous, Rif A., Seybold, Bryan, Slaney, Malcolm, Weiss, Ron J., Wilson, Kevin
Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 vide
Externí odkaz:
http://arxiv.org/abs/1609.09430
Autor:
Caroline Liu, Daniel P. W. Ellis, Manoj Plakal, Shawn Hershey, Eduardo Fonseca, Aren Jansen, R. Channing Moore
Publikováno v:
ICASSP
To reveal the importance of temporal precision in ground truth audio event labels, we collected precise (~0.1 sec resolution) "strong" labels for a portion of the AudioSet dataset. We devised a temporally strong evaluation set (including explicit neg
Autor:
Eduardo Fonseca, Aren Jansen, Daniel P. W. Ellis, Scott Wisdom, Marco Tagliasacchi, John R. Hershey, Manoj Plakal, Shawn Hershey, R. Channing Moore, Xavier Serra
Comunicació presentada a 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), celebrat del 17 al 20 d'octubre de 2021 a New Paltz, Estats Units. Real-world sound scenes consist of time-varying collections of sound
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b61bcf54e52a20604b992da9fb020b48
Publikováno v:
PLoS Computational Biology, Vol 9, Iss 3, p e1002942 (2013)
Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust percepti
Externí odkaz:
https://doaj.org/article/7c2c5575599b4dc19d7fd054c069d659