Zobrazeno 1 - 10
of 291
pro vyhledávání: '"Quy, Pham"'
We study how the properties of being reduced, integral domain, and normal, behave under small perturbations of the defining equations of a noetherian local ring. It is not hard to show that the property of being a local integral domain (reduced, norm
Externí odkaz:
http://arxiv.org/abs/2411.19011
We prove that if the first tight Hilbert coefficient vanishes then ring is $F$-rational provided it is a Buchsbaum local ring satisfying the $(S_2)$ condition.
Comment: 10 pages, comments are wellcome
Comment: 10 pages, comments are wellcome
Externí odkaz:
http://arxiv.org/abs/2401.06756
Let $(R, \mathfrak{m})$ be a Noetherian local ring. This paper concerns several extremal invariants arising from the study of the relation between colength and (Hilbert--Samuel or Hilbert--Kunz) multiplicity of an $\mathfrak{m}$-primary ideal. We int
Externí odkaz:
http://arxiv.org/abs/2305.12469
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
Abstract Paleo-climatic induced sedimentation controls present-day recharge and the fresh-salt groundwater distribution in Quaternary delta systems. During sea-level highstands, marine clays with saline pore water were deposited and are interbedded w
Externí odkaz:
https://doaj.org/article/453ddb1913df46549f7e71e50c9b5027
Autor:
Ma, Linquan, Quy, Pham Hung
Let $(R,\mathfrak{m})$ be a Noetherian local ring such that $\widehat{R}$ is reduced. We prove that, when $\widehat{R}$ is $S_2$, if there exists a parameter ideal $Q\subseteq R$ such that $\bar{e}_1(Q)=0$, then $R$ is regular and $\nu(\mathfrak{m}/Q
Externí odkaz:
http://arxiv.org/abs/2301.13084
Autor:
Huong, Duong Thi, Quy, Pham Hung
Let $(R,\frak m)$ be an excellent generalized Cohen-Macaulay local ring of dimension $d$ that is $F$-injective on the punctured spectrum. Let $\frak q$ be a standard parameter ideal of $R$. The aim of the paper is to prove that $$\ell_R({\frak q}^F/{
Externí odkaz:
http://arxiv.org/abs/2209.13872
Autor:
Yamashita, Tadashi1 (AUTHOR) yamashita@tr.kobe-ccn.ac.jp, Quy, Pham Nguyen2 (AUTHOR), Yamada, Chika3 (AUTHOR), Nogami, Emi4 (AUTHOR), Kato, Kenji5 (AUTHOR)
Publikováno v:
Tropical Medicine & Health. 7/1/2024, Vol. 52 Issue 1, p1-8. 8p.
Let $(R,\mathfrak{m})$ be a Noetherian local ring of prime characteristic $p$ and $Q$ be an $\mathfrak{m}$-primary parameter ideal. We give criteria for F-rationality of $R$ using the tight Hilbert function $H^*_Q(n)=\ell(R/(Q^n)^*$ and the coefficie
Externí odkaz:
http://arxiv.org/abs/2109.01257
Autor:
Ma, Linquan, Quy, Pham Hung
A Noetherian local ring $(R,\mathfrak{m})$ is called Buchsbaum if the difference $e(\mathfrak{q}, R)-\ell(R/\mathfrak{q})$, where $\mathfrak{q}$ is an ideal generated by a system of parameters, is a constant independent of $\mathfrak{q}$. In this art
Externí odkaz:
http://arxiv.org/abs/2108.02615
Let $(a, b, c)$ be a primitive Pythagorean triple parameterized as $a=u^2-v^2,\ b=2uv,\ c=u^2+v^2$,\ where $u>v>0$ are co-prime and not of the same parity. In 1956, L. Je{\'s}manowicz conjectured that for any positive integer $n$, the Diophantine equ
Externí odkaz:
http://arxiv.org/abs/2102.10921