Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Qureshi, Ans"'
Amidst growing food production demands, early plant disease detection is essential to safeguard crops; this study proposes a visual machine learning approach for plant disease detection, harnessing RGB and NIR data collected in real-world conditions
Externí odkaz:
http://arxiv.org/abs/2402.07895
Autor:
Qureshi, Ans, Smith, David, Gee, Trevor, Nejati, Mahla, Shahabi, Jalil, Lim, JongYoon, Ahn, Ho Seok, McGuinness, Ben, Downes, Catherine, Jangali, Rahul, Black, Kale, Lim, Hin, Duke, Mike, MacDonald, Bruce, Williams, Henry
Aotearoa New Zealand has a strong and growing apple industry but struggles to access workers to complete skilled, seasonal tasks such as thinning. To ensure effective thinning and make informed decisions on a per-tree basis, it is crucial to accurate
Externí odkaz:
http://arxiv.org/abs/2308.07512
Autor:
Qureshi, Ans, Loh, Neville, Kwon, Young Min, Smith, David, Gee, Trevor, Bachelor, Oliver, McCulloch, Josh, Nejati, Mahla, Lim, JongYoon, Green, Richard, Ahn, Ho Seok, MacDonald, Bruce, Williams, Henry
Following a global trend, the lack of reliable access to skilled labour is causing critical issues for the effective management of apple orchards. One of the primary challenges is maintaining skilled human operators capable of making precise fruitlet
Externí odkaz:
http://arxiv.org/abs/2302.09716
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hussain Qureshi, Ans, Latif Anjum, Muhammmad, Hussain, Wajahat, Muddassar, Usama, Abbasi, Sohail
Publikováno v:
Advanced Robotics; Mar2024, Vol. 38 Issue 5, p307-322, 16p