Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Quintero, José Raúl"'
The $abcd$-Boussinesq system is a model of two equations that can describe the propagation of small-amplitude long waves in both directions in the water of finite depth. Considering the Hamiltonian regimes, where the parameters $b$ and $d$ in the sys
Externí odkaz:
http://arxiv.org/abs/2306.17335
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic var
Externí odkaz:
http://arxiv.org/abs/1202.0450
Autor:
Pego, Robert L., Quintero, Jose Raul
We describe traveling waves in a basic model for three-dimensional water-wave dynamics in the weakly nonlinear long-wave regime. Small solutions that are periodic in the direction of translation (or orthogonal to it) form an infinite-dimensional fami
Externí odkaz:
http://arxiv.org/abs/nlin/0111045
Autor:
Quintero, José Raúl
Publikováno v:
Quarterly of Applied Mathematics; Mar2024, Vol. 82 Issue 1, p65-79, 15p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pego, Robert L., Quintero, José Raúl *
Publikováno v:
In Physica D: Nonlinear Phenomena 1999 132(4):476-496
Autor:
Quintero, José Raúl
Publikováno v:
Repositorio Digital Univalle
Universidad del Valle
instacron:Universidad del Valle
Universidad del Valle
instacron:Universidad del Valle
En este artículo hacemos una extensión del teorema de Kolesov al caso de un sistema de dos ecuaciones diferenciales parabólicas y demostramos la existencia de soluciones clásicas periódicas de un sistema de Reacción - Difusión especial.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::a18c4b8cc805c45b1f7358eed3ad9ba4
Publikováno v:
Communications on Pure & Applied Analysis; Mar2018, Vol. 17 Issue 2, p557-N.PAG, 22p
Autor:
Quintero, José Raúl
Publikováno v:
Differential Integral Equations 24, no. 3/4 (2011), 325-360
We address the well posedness of the Cauchy problem and the stability of solitary waves for a Boussinesq system in $\mathbb{R}^{1+2}$. We exploit the fact that this 2D system has a ``KdV'' structure in the sense that it takes the form $U_t =\mathcal
Autor:
Quintero, José Raúl
Publikováno v:
Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombia
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombia
We prove the existence and analyticity of lump solutions (finiteenergy solitary waves) for generalized Benney-Luke equations that arise in the study of the evolution of small amplitude, three-dimensional water waves. The family of generalized Benney-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8dfcf930f3e299bd9b369bf587fd96e2
https://repositorio.unal.edu.co/handle/unal/43807
https://repositorio.unal.edu.co/handle/unal/43807