Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Quero, Daniel"'
In this work, we use the integral definition of the fractional Laplace operator and study a sparse optimal control problem involving a fractional, semilinear, and elliptic partial differential equation as state equation; control constraints are also
Externí odkaz:
http://arxiv.org/abs/2312.08335
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters
Externí odkaz:
http://arxiv.org/abs/2301.13058
We analyze, in two dimensions, an optimal control problem for the Navier--Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting le
Externí odkaz:
http://arxiv.org/abs/2112.15061
In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we propose and analyze a posteriori error estimators for an optimal control problem involving the stationary Navier--Stokes equations; control constraints are also
Externí odkaz:
http://arxiv.org/abs/2004.03086
We design and analyze a posteriori error estimators for the Stokes system with singular sources in suitable $\mathbf{W}^{1,p}\times \mathrm{L}^p$ spaces. We consider classical low-order inf-sup stable and stabilized finite element discretizations. We
Externí odkaz:
http://arxiv.org/abs/1912.08325
We devise and analyze a reliable and efficient a posteriori error estimator for a semilinear control-constrained optimal control problem in two and three dimensional Lipschitz, but not necessarily convex, polytopal domains. We consider a fully discre
Externí odkaz:
http://arxiv.org/abs/1911.09628
The aim of this work is to derive a priori error estimates for finite element discretizations of control--constrained optimal control problems that involve the Stokes system and Dirac measures. The first problem entails the minimization of a cost fun
Externí odkaz:
http://arxiv.org/abs/1907.11096
We propose and analyze a reliable and efficient a posteriori error estimator for the pointwise tracking optimal control problem of the Stokes equations. This linear-quadratic optimal control problem entails the minimization of a cost functional that
Externí odkaz:
http://arxiv.org/abs/1810.02415
Publikováno v:
In Computers and Mathematics with Applications 15 July 2021 94:47-59
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.