Zobrazeno 1 - 10
of 2 138
pro vyhledávání: '"Quasi-stationary distributions"'
Autor:
Fraiman, Nicolas, Nisenzon, Michael
Spectral clustering is a widely used method for community detection in networks. We focus on a semi-supervised community detection scenario in the Partially Labeled Stochastic Block Model (PL-SBM) with two balanced communities, where a fixed portion
Externí odkaz:
http://arxiv.org/abs/2412.09793
Autor:
Journel, Lucas, Rousset, Mathias
We study mean-field particle approximations of normalized Feynman-Kac semi-groups, usually called Fleming-Viot or Feynman-Kac particle systems. Assuming various large time stability properties of the semi-group uniformly in the initial condition, we
Externí odkaz:
http://arxiv.org/abs/2412.15820
We consider reversible ergodic Markov chains with finite state space, and we introduce a new notion of quasi-stationary distribution that does not require the presence of any absorbing state. In our setting, the hitting time of the absorbing set is r
Externí odkaz:
http://arxiv.org/abs/2409.19246
Autor:
Fang, Zhe-Kang, Mao, Yong-Hua
This paper studies the quasi-stationary distributions for a single death process (or downwardly skip-free process) with killing defined on the non-negative integers, corresponding to a non-conservative transition rate matrix. The set $\{1,2,3,\cdots\
Externí odkaz:
http://arxiv.org/abs/2408.05662
Autor:
Du, Qian, Mao, Yong-Hua
For the continuous-time $\lambda$-recurrent jump process, the $\lambda$-recurrence assures the existence of quasi-stationary distribution when it has finite exit states (the states that have positive killing rates). And we give an explicit representa
Externí odkaz:
http://arxiv.org/abs/2407.19803
Autor:
Hong, Wenming, Yao, Dan
Consider a subcritical branching Markov chain. Let $Z_n$ denote the counting measure of particles of generation $n$. Under some conditions, we give a probabilistic proof for the existence of the Yaglom limit of $(Z_n)_{n\in\mathbb{N}}$ by the moment
Externí odkaz:
http://arxiv.org/abs/2405.04284
Autor:
Noba, Kei, Yamato, Kosuke
For a generalized scale function of standard processes, we characterize it as a unique solution to a Volterra type integral equation. This allows us to extend it to an entire function and to derive a useful identity that we call the resolvent identit
Externí odkaz:
http://arxiv.org/abs/2308.09935
Publikováno v:
Probability Theory & Related Fields. Feb2024, Vol. 188 Issue 1/2, p667-728. 62p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.