Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Quantile convolutional neural networks"'
Publikováno v:
In Transportation Engineering December 2022 10
Publikováno v:
Transportation Engineering, Vol 10, Iss , Pp 100150- (2022)
An improvement in energy efficiency of Battery Thermal Management Systems (BTMS) can increase range and reduce well-to-wheel emissions of Battery Electric Vehicles (BEV). In this work, the potential of a predictive BTMS using Quantile Convolutional N
Externí odkaz:
https://doaj.org/article/a3df35aabac3412abe2ed48285f5131d
Autor:
Petneházi, Gábor
This article presents a new method for forecasting Value at Risk. Convolutional neural networks can do time series forecasting, since they can learn local patterns in time. A simple modification enables them to forecast not the mean, but arbitrary qu
Externí odkaz:
http://arxiv.org/abs/1908.07978
Publikováno v:
IEEE Open Journal of Intelligent Transportation Systems, Vol 3, Pp 411-425 (2022)
The energy consumption caused by battery thermal management of electric vehicles can be reduced using predictive control. A predictive controller needs a prediction model of the battery temperature, for example for different battery cooling and heati
Externí odkaz:
https://doaj.org/article/c8ea88ec9d534ef982abace7c107a139
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gábor Petneházi
Publikováno v:
Machine Learning with Applications, Vol 6, Iss , Pp 100096- (2021)
This article presents a new method for forecasting Value at Risk. Convolutional neural networks can do time series forecasting, since they can learn local patterns in time. A simple modification enables them to forecast not the mean, but arbitrary qu
Externí odkaz:
https://doaj.org/article/f49c28d9fb014f65a97fb259b481874b
Autor:
Petneházi, Gábor
Publikováno v:
In Machine Learning with Applications 15 December 2021 6
Autor:
Petneh��zi, G��bor
This article presents a new method for forecasting Value at Risk. Convolutional neural networks can do time series forecasting, since they can learn local patterns in time. A simple modification enables them to forecast not the mean, but arbitrary qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb45455635bb55a2619ac1fb7df3d0ff
Publikováno v:
Batteries; Mar2024, Vol. 10 Issue 3, p85, 22p
Publikováno v:
Kybernetika; 2024, Vol. 60 Issue 1, p18-59, 22p