Zobrazeno 1 - 10
of 551
pro vyhledávání: '"Quan-Ke Pan"'
Publikováno v:
European Journal of Operational Research. 310:597-610
Publikováno v:
IEEE Access, Vol 8, Pp 35063-35076 (2020)
This paper deals with a new automatic guided vehicle (AGV) scheduling problem from the material handling process in a linear manufacturing workshop. The problem is to determine a sequence of Cells for AGV to travel to minimize the standard deviation
Externí odkaz:
https://doaj.org/article/6ab5b3c0ab6541c9982146ce7e9544a2
Publikováno v:
Measurement + Control, Vol 53 (2020)
Steelmaking-refining-Continuous Casting (SCC) is a key process in iron and steel production. SCC scheduling is to determine an optimal schedule for the SCC process, which is a worldwide and important problem. High-quality SCC scheduling methods will
Externí odkaz:
https://doaj.org/article/5b00d582ecdd4315af982ce2c8e07651
Publikováno v:
IEEE Access, Vol 7, Pp 39369-39377 (2019)
Point cloud is a collection of many unordered points. Deep learning network encounters difficulties in utilizing the local information of point cloud because of its irregular format. This is not conducive to the network to identify the details of the
Externí odkaz:
https://doaj.org/article/3aabfea3ae874a7b8d9066bb63046fe1
Publikováno v:
Neural Computing and Applications. 35:6361-6381
Publikováno v:
IEEE Transactions on Systems, Man, and Cybernetics: Systems. 52:5783-5794
Publikováno v:
International Journal of Production Research. 61:1013-1038
Autor:
Peiyong Duan, Kaizhou Gao, Junqing Li, Quan-Ke Pan, Ponnuthurai Nagaratnam Suganthan, Dunwei Gong, Yu Du
Publikováno v:
IEEE Transactions on Automation Science and Engineering. 19:2153-2170
In this study, we propose an efficient optimization algorithm that is a hybrid of the iterated greedy and simulated annealing algorithms (hereinafter, referred to as IGSA) to solve the flexible job shop scheduling problem with crane transportation pr
Publikováno v:
International Journal of Production Research. 61:1755-1770
Publikováno v:
IEEE Transactions on Emerging Topics in Computational Intelligence. :1-15