Zobrazeno 1 - 10
of 124
pro vyhledávání: '"Qingying Xue"'
Publikováno v:
Mathematics, Vol 11, Iss 1, p 8 (2022)
In this survey, we review the historical development for the Carleson problem about the a.e. pointwise convergence in five aspects: the a.e. convergence for generalized Schrödinger operators along vertical lines; a.e. convergence for Schrödinger op
Externí odkaz:
https://doaj.org/article/770cb7e3cc224217ba7aa9d55ff32c42
Autor:
Zengyan Si, Qingying Xue
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-21 (2018)
Abstract Let TΠb→ $T_{\Pi\vec {b}}$ be the commutator generated by a multilinear square function and Lipschitz functions with kernel satisfying Dini-type condition. We show that TΠb→ $T_{\Pi\vec {b}}$ is bounded from product Lebesgue spaces int
Externí odkaz:
https://doaj.org/article/28423f842071440abdca59162ce7cc21
Autor:
Zhengyang Li, Qingying Xue
Publikováno v:
Journal of Inequalities and Applications, Vol 2016, Iss 1, Pp 1-22 (2016)
Abstract Let T b → $T_{\vec{b}}$ and T Π b $T_{\Pi b}$ be the commutators in the jth entry and iterated commutators of the multilinear Calderón-Zygmund operators, respectively. It was well known that the commutators of linear Calderón-Zygmund op
Externí odkaz:
https://doaj.org/article/35a300007bcf441aacb72672c01e15fd
Publikováno v:
Journal of Function Spaces, Vol 2018 (2018)
We first introduce the multiple weights which are suitable for the study of Bergman type operators. Then, we give the sharp weighted estimates for multilinear fractional Bergman operators and fractional maximal function.
Externí odkaz:
https://doaj.org/article/a11605fc1db145069bef9448e3b1ae07
Autor:
Zengyan Si, Qingying Xue
Publikováno v:
Journal of Function Spaces, Vol 2016 (2016)
Let T be a multilinear square function with a kernel satisfying Dini(1) condition and let T⁎ be the corresponding multilinear maximal square function. In this paper, first, we showed that T is bounded from L1×⋯×L1 to L1/m,∞. Secondly, we obta
Externí odkaz:
https://doaj.org/article/c1e91c9b142d44f38fe86739e4928427
Autor:
Mingming Cao, Qingying Xue
Publikováno v:
Journal of Function Spaces, Vol 2016 (2016)
Let m,n≥1 and let gλ1,λ2⁎ be the biparameter Littlewood-Paley gλ⁎-function defined by gλ1,λ2⁎fx = ∬R+m+1 t2/t2+x2-y2mλ2∬R+n+1 t1/t1+x1-y1nλ1×θt1,t2fy1,y22dy1dt1/t1n+1dy2dt2/t2m+11/2, λ1>1, λ2>1, where θt1,t2f is a nonconvoluti
Externí odkaz:
https://doaj.org/article/df5fff0025354040b6c31dff97d50482
Autor:
Qingying Xue, Juyang Zhang
Publikováno v:
Journal of Inequalities and Applications, Vol 2009 (2009)
Let μ be a positive Radon measure on ℝd which may be nondoubling. The only condition that μ satisfies is μ(B(x,r))≤C0rn for all x∈ℝd, r>0, and some fixed constant C0. In this paper, we introduce the operator gλ,μ∗ related to such a mea
Externí odkaz:
https://doaj.org/article/ad81c6e72989440288ab544690fb7146
Autor:
Kôzô Yabuta, Qingying Xue
Publikováno v:
Journal of Inequalities and Applications, Vol 2007 (2007)
We give the L2 estimates for the Marcinkiewicz integral with rough variable kernels associated to surfaces. More precisely, we give some other sufficient conditions which are different from the conditions known before to warrant that the L2-boundedne
Externí odkaz:
https://doaj.org/article/4f90168ff84d43b2a3b56da3eb80cf35
Publikováno v:
Chinese Annals of Mathematics, Series B. 44:391-406
Publikováno v:
Mathematische Nachrichten. 296:2070-2089