Zobrazeno 1 - 10
of 185
pro vyhledávání: '"Qingying Xue"'
Publikováno v:
Mathematics, Vol 11, Iss 1, p 8 (2022)
In this survey, we review the historical development for the Carleson problem about the a.e. pointwise convergence in five aspects: the a.e. convergence for generalized Schrödinger operators along vertical lines; a.e. convergence for Schrödinger op
Externí odkaz:
https://doaj.org/article/770cb7e3cc224217ba7aa9d55ff32c42
Publikováno v:
Chinese Annals of Mathematics, Series B. 44:391-406
Publikováno v:
Mathematische Nachrichten. 296:2070-2089
Autor:
Zengyan Si, Qingying Xue
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-21 (2018)
Abstract Let TΠb→ $T_{\Pi\vec {b}}$ be the commutator generated by a multilinear square function and Lipschitz functions with kernel satisfying Dini-type condition. We show that TΠb→ $T_{\Pi\vec {b}}$ is bounded from product Lebesgue spaces int
Externí odkaz:
https://doaj.org/article/28423f842071440abdca59162ce7cc21
Autor:
Zhengyang Li, Qingying Xue
Publikováno v:
Journal of Inequalities and Applications, Vol 2016, Iss 1, Pp 1-22 (2016)
Abstract Let T b → $T_{\vec{b}}$ and T Π b $T_{\Pi b}$ be the commutators in the jth entry and iterated commutators of the multilinear Calderón-Zygmund operators, respectively. It was well known that the commutators of linear Calderón-Zygmund op
Externí odkaz:
https://doaj.org/article/35a300007bcf441aacb72672c01e15fd
Autor:
Shifen Wang, Qingying Xue
Publikováno v:
Forum Mathematicum. 34:307-322
Let T be a bilinear Calderón–Zygmund singular integral operator and let T * {T^{*}} be its corresponding truncated maximal operator. For any b ∈ BMO ( ℝ n ) {b\in\operatorname{BMO}({\mathbb{R}^{n}})} and b → = ( b 1 , b 2 ) ∈ BMO (
Publikováno v:
Annales Fennici Mathematici
Let \(\Omega\) be a subdomain in \(\mathbb{R}^n\) and \(M_\Omega\) be the local Hardy-Littlewood maximal function. In this paper, we show that both the commutator and the maximal commutator of \(M_\Omega\) are bounded and continuous from the first or
Publikováno v:
Collectanea Mathematica.
In this paper, the object of our investigation is the following Littlewood-Paley square function $g$ associated with the Schr\"odinger operator $L=-\Delta +V$ which is defined by: $g(f)(x)=\Big(\int_{0}^{\infty}\Big|\frac{d}{dt}e^{-tL}(f)(x)\Big|^2td
Autor:
Shifen Wang, Qingying Xue
Publikováno v:
Revista Matemática Complutense. 35:871-893
Let $$\mathcal {T}^*$$ and $$\mathcal {I}_\alpha $$ be the semi-group maximal function and fractional integrals associated to the Schrodinger operator $$-\Delta +V(x)$$ , respectively, with V satisfying an appropriate reverse Holder inequality. In th
Publikováno v:
Journal of Function Spaces, Vol 2018 (2018)
We first introduce the multiple weights which are suitable for the study of Bergman type operators. Then, we give the sharp weighted estimates for multilinear fractional Bergman operators and fractional maximal function.
Externí odkaz:
https://doaj.org/article/a11605fc1db145069bef9448e3b1ae07