Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Qinghou Zeng"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 44, Iss 4, p 1513 (2024)
Externí odkaz:
https://doaj.org/article/d0a6f8202a84472685cd9525e36ffd9a
Autor:
Jing Lin, Qinghou Zeng
Publikováno v:
Discrete Applied Mathematics. 311:18-25
Publikováno v:
Pure and Applied Mathematics Quarterly. 18:2599-2618
Publikováno v:
Discrete Mathematics. 346:113344
Publikováno v:
Graphs and Combinatorics. 38
Publikováno v:
Discrete Mathematics. 345:112914
Autor:
Chunlei Zu, Qinghou Zeng
In this paper, we consider the decomposition of multigraphs under minimum degree constraints and give a unified generalization of several results by various researchers. Let $G$ be a multigraph in which no quadrilaterals share edges with triangles an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::596960b63adfba5a76a953394b46c524
Publikováno v:
Bulletin of the Australian Mathematical Society. 100:13-26
For a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. Given a fixed graph $H$ and a positive integer $m$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$, as $G$ ranges over all graphs on $m$ ed
Publikováno v:
SIAM Journal on Discrete Mathematics. 32:505-521
Let $r\ge 3$ and $k\ge 2$ be fixed integers. Bollobas and Scott conjectured that every $r$-uniform hypergraph with $m$ edges has a vertex partition into $k$ sets with at most $m/k^r+o(m)$ edges in ...
Autor:
Qinghou Zeng, Jianfeng Hou
Publikováno v:
Czechoslovak Mathematical Journal. 67:741-752
Let G be a weighted hypergraph with edges of size at most 2. Bollobas and Scott conjectured that G admits a bipartition such that each vertex class meets edges of total weight at least (w1−Δ1)/2+2w2/3, where wi is the total weight of edges of size