Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Qin-yan LI"'
A pair of graphs $(\Gamma,\Sigma)$ is said to be stable if the full automorphism group of $\Gamma\times\Sigma$ is isomorphic to the product of the full automorphism groups of $\Gamma$ and $\Sigma$ and unstable otherwise, where $\Gamma\times\Sigma$ is
Externí odkaz:
http://arxiv.org/abs/2210.06777
Publikováno v:
In Discrete Mathematics April 2024 347(4)
Publikováno v:
Journal of Combinatorial Theory, Series B, 147(2021): 71-95
We start up the study of the stability of general graph pairs. This notion is a generalization of the concept of the stability of graphs. We say that a pair of graphs $(\Gamma,\Sigma)$ is stable if $Aut(\Gamma\times\Sigma) \cong Aut(\Gamma)\times Aut
Externí odkaz:
http://arxiv.org/abs/2010.16137
The canonical double cover $\D(\Gamma)$ of a graph $\Gamma$ is the direct product of $\Gamma$ and $K_2$. If $\Aut(\D(\Gamma))\cong\Aut(\Gamma)\times\ZZ_2$ then $\Gamma$ is called stable; otherwise $\Gamma$ is called unstable. An unstable graph is sai
Externí odkaz:
http://arxiv.org/abs/1807.07228
The canonical double cover $\mathrm{D}(\Gamma)$ of a graph $\Gamma$ is the direct product of $\Gamma$ and $K_2$. If $\mathrm{Aut}(\mathrm{D}(\Gamma))=\mathrm{Aut}(\Gamma)\times\mathbb{Z}_2$ then $\Gamma$ is called stable; otherwise $\Gamma$ is called
Externí odkaz:
http://arxiv.org/abs/1802.04921
Autor:
Yuan, Lin, Qin, Yan-Li, Zou, Zhi-Cheng, Appiah, Bright, Huang, Hao, Yang, Zhong-Hua, Qun, Can
Publikováno v:
In Journal of Bioscience and Bioengineering December 2022 134(6):528-533
Autor:
Qin, Yan-Li, Zhou, Jin-Xin
A graph is said to be a bi-Cayley graph over a group H if it admits H as a group of automorphisms acting semiregularly on its vertices with two orbits. A non-abelian group is called an inner-abelian group if all of its proper subgroups are abelian. I
Externí odkaz:
http://arxiv.org/abs/1701.00908
Autor:
Qin, Yan-Li, Zhou, Jin-Xin
A graph is said to be a bi-Cayley graph over a group H if it admits H as a group of automorphisms acting semiregularly on its vertices with two orbits. For a prime p, we call a bi-Cayley graph over a metacyclic p-group a bi-p-metacirculant. In this p
Externí odkaz:
http://arxiv.org/abs/1610.07307
Publikováno v:
In Journal of Combinatorial Theory, Series B March 2021 147:71-95
Publikováno v:
In Journal of Combinatorial Theory, Series B May 2019 136:154-169