Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Qin, Guoquan"'
Publikováno v:
Monatshefte fur Mathematik 2021
In this paper, we are concerned with the Cauchy problem and wave-breaking phenomenon for a sine-type modified Camassa-Holm (alias sine-FORQ/mCH) equation. Employing the transport equations theory and the Littlewood-Paley theory, we first establish th
Externí odkaz:
http://arxiv.org/abs/2112.10772
In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa-Holm (HOCH) equation, which is an higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon
Externí odkaz:
http://arxiv.org/abs/2112.10366
Autor:
Zheng, Zhenhui, Chen, Ling, Wei, Lijiao, Huang, Weihua, Du, Dongjie, Qin, Guoquan, Yang, Zhou, Wang, Shuo
Publikováno v:
In Smart Agricultural Technology December 2024 9
Publikováno v:
In Palaeogeography, Palaeoclimatology, Palaeoecology 15 April 2024 640
Autor:
Guo, Boling, Qin, Guoquan
We prove the existence of time periodic solution to the 3D Ginzburg-Landau equation in weighted Sobolev spaces. We consider the cubic Ginzburg-Landau equation with an external force $g$ satisfying the oddness condition $g(-x,t)=-g(x,t)$. The existenc
Externí odkaz:
http://arxiv.org/abs/1907.03114
Autor:
Qin, Guoquan
In this paper, we establish the uniquely existence of the global mild solution to the nematic liquid crystal equations in Besov-Morrey spaces. Some self-similarity and large time behavior of the global mild solution are also investigated.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1906.06503
Autor:
Guo, Boling, Qin, Guoquan
We establish the existence and uniqueness of local strong solutions to the Navier-Stokes equations with arbitrary initial data and external forces in the homogeneous Besov-Morrey space. The local solutions can be extended globally in time provided th
Externí odkaz:
http://arxiv.org/abs/1906.02887
Autor:
Guo, Boling, Qin, Guoquan
In this paper, we investigate some special regularities and decay properties of solutions to the initial value problem(IVP) of the Benjamin equation. The main result shows that: for initial datum $u_{0}\in H^{s}(\mathbb{R})$ with $s>3/4,$ if the rest
Externí odkaz:
http://arxiv.org/abs/1801.09966
Publikováno v:
In Palaeogeography, Palaeoclimatology, Palaeoecology 15 September 2022 602
Autor:
Yuan, Baoquan, Qin, Guoquan
In this paper, we are concerned with the local existence of strong solutions to the $k-\varepsilon$ model equations for turbulent flows in a bounded domain $\Omega$$\subset$ $\mathbb{R}^{3}$. We prove the existence of unique local strong solutions un
Externí odkaz:
http://arxiv.org/abs/1507.03083