Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Qiaozhi Geng"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 30059-30074 (2023)
Let $ H $ be a graph with edge set $ E_H $. The Sombor index and the reduced Sombor index of a graph $ H $ are defined as $ SO(H) = \sum\limits_{uv\in E_H}\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $ and $ SO_{red}(H) = \sum\limits_{uv\in E_H}\sqrt{(d_{H}(u)-1
Externí odkaz:
https://doaj.org/article/c978e67e6d034730894b57215a2bec6c
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 26301-26327 (2023)
Let $ H $ be a connected graph. The edge revised Szeged index of $ H $ is defined as $ Sz^{\ast}_{e}(H) = \sum\limits_{e = uv\in E_H}(m_{u}(e|H)+\frac{m_{0}(e|H)}{2})(m_{v}(e|H)+\frac{m_{0}(e|H)}{2}) $, where $ m_{u}(e|H) $ (resp., $ m_{v}(e|H) $) is
Externí odkaz:
https://doaj.org/article/a3ced1153d7842d8b3a71ca1a0c05f01
Publikováno v:
Communications in Algebra. 45:749-763
In this paper, we study a new Lie superalgebra constructed by a 2|2-dimensional Balinsky–Novikov superalgebra, which is called the superalgebra of W(2,2). It can be realized from semi product of the W-algebra W(2,2) and its module of the intermedia
In this paper, we focus on $(n+3)$-dimensional metric $n$-Lie algebras. To begin with, we give some properties on $(n+3)$-dimensional $n$-Lie algebras. Then based on the properties, we obtain the classification of $(n+3)$-dimensional metric $n$-Lie a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b739b57482ffe76b6a1e286dfc06821
http://arxiv.org/abs/1006.4194
http://arxiv.org/abs/1006.4194