Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Qiaoluan Li"'
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-26 (2023)
Abstract In this paper, we consider fractional neutral differential equations with multipoint boundary value conditions involving Hadamard derivatives and integrals. We obtain the existence and uniqueness of the solution of the equation by using seve
Externí odkaz:
https://doaj.org/article/004434bf948b4343834f7573f5f6cc91
Autor:
Shuang Zhang, Qiaoluan Li
Publikováno v:
Journal of Mathematics, Vol 2021 (2021)
We study oscillatory properties for second-order impulsive neutral dynamic equations with positive and negative coefficients on time scales. By using variable substitution, we obtain sufficient conditions for several dynamic equations to be oscillato
Externí odkaz:
https://doaj.org/article/3784fb551fe448739b5ee6a940c7e615
Publikováno v:
Journal of Hebei University of Science and Technology, Vol 38, Iss 4, Pp 360-366 (2017)
Fractional calculus is a theory that studies the properties and application of arbitrary order differentiation and integration. It can describe the physical properties of some systems more accurately, and better adapt to changes in the system, playin
Externí odkaz:
https://doaj.org/article/0b755708ec454af999691fc905f6a4e3
Autor:
Qiaoluan Li, Wing-Sum Cheung
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 43,, Pp 1-11 (2013)
We establish some oscillation criteria for a forced second-order differential equation with impulses. These results extend some well-known results for forced second-order impulsive differential equations with delay.
Externí odkaz:
https://doaj.org/article/53c86e4447454c9e8e79e9533414566d
Autor:
Haifeng Liu, Qiaoluan Li
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 33,, Pp 1-7 (2011)
In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by
Externí odkaz:
https://doaj.org/article/1c6c1cdfe6214953aadba9bbd2e850ad
Autor:
Qiaoluan Li, Zhenguo Zhang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2010, Iss 151,, Pp 1-8 (2010)
In this article, we study n-th order neutral nonlinear dynamic equation on time scales. We obtain sufficient conditions for the existence of non-oscillatory solutions by using fixed point theory.
Externí odkaz:
https://doaj.org/article/5c987d0610de486a9dee5e179b4c15db
Autor:
Qiaoluan Li, Fang Guo
Publikováno v:
Electronic Journal of Differential Equations, Vol 2009, Iss 122,, Pp 1-7 (2009)
In this article, we study the oscillation of second order impulsive dynamic equations on time scales. The effect of the moments of impulse are fixed. Using Riccati transformation techniques, we obtain some conditions for the oscillation of all soluti
Externí odkaz:
https://doaj.org/article/15dc07aff8d54d1fac4e0579722a1c1d
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 09, Pp 1-7 (2007)
In this paper, we consider the higher order neutral nonlinear difference equation$$displaylines{ Delta^{m}(x(n)+p(n)x(au(n)))+f_1(n,x(sigma_{1}(n))) -f_2(n,x(sigma_{2}(n)))=0, cr Delta^{m}(x(n)+p(n)x(au(n)))+f_1(n,x(sigma_{1}(n))) -f_2(n,x(sigma_{2}(
Externí odkaz:
https://doaj.org/article/3a6bbadff60943c2b8e7a7d6fc0408f0
Publikováno v:
Electronic Journal of Differential Equations, Vol 2005, Iss 53, Pp 1-12 (2005)
In this paper, we consider the second-order nonlinear and the nonlinear neutral functional differential equations $$displaylines{ (a(t)x'(t))'+f(t,x(g(t)))=0,quad tgeq t_0cr (a(t)(x(t)-p(t)x(t-au))')'+f(t,x(g(t)))=0,quad tgeq t_0,. }$$ Using the Bana
Externí odkaz:
https://doaj.org/article/86038cc3b0d64b19a32bb683bca0cc32
Publikováno v:
Journal of Nonlinear Modeling & Analysis; 2023, Vol. 5 Issue 4, p763-781, 19p