Zobrazeno 1 - 10
of 181
pro vyhledávání: '"Qian, Guohua"'
Autor:
Qian, Guohua, Zeng, Yu
For an irreducible complex character $\chi$ of a finite group $G$, the codegree of $\chi$ is defined by $|G:\ker(\chi)|/\chi(1)$, where $\ker(\chi)$ is the kernel of $\chi$. Given a prime $p$, we provide a classification of finite groups in which eve
Externí odkaz:
http://arxiv.org/abs/2411.04478
Autor:
Qian, Guohua
Publikováno v:
In Journal of Pure and Applied Algebra January 2025 229(1)
Autor:
Qian, Guohua, Yang, Yong
In this paper, we get the sharp bound for $|G/O_p(G)|_p$ under the assumption that either $p^2 \nmid \chi(1)$ for all $\chi \in {\rm Irr}(G)$ or $p^2 \nmid \phi(1)$ for all $\phi \in {\rm IBr}_p(G)$. This would settle two conjectures raised by Lewis,
Externí odkaz:
http://arxiv.org/abs/2102.09165
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Qian, Guohua
Publikováno v:
In Journal of Algebra 15 January 2023 614:695-711
Autor:
Qian, Guohua, Yang, Yong
Let $p$ be a prime and let $P$ be a Sylow $p$-subgroup of a finite nonabelian group $G$. Let $bcl(G)$ be the size of the largest conjugacy class of the group $G$. We show that $|P/O_p(G)| < bcl(G)$ if $G$ is not abelian.
Externí odkaz:
http://arxiv.org/abs/1710.01861
Autor:
Qian, Guohua
Publikováno v:
In Journal of Algebra 15 April 2021 572:129-145
Autor:
Qian, Guohua, Yang, Yong
Publikováno v:
In Journal of Pure and Applied Algebra January 2021 225(1)
Autor:
Yang, Yong, Qian, Guohua
Let $G$ be a finite group and $Irr(G)$ the set of irreducible complex characters of $G$. Let $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $\chi(1)$ for some $\chi \in Irr(G)$. We show that $|G:\mathbf{F}(G)|_p \leq p^{k e_p(G)}$ for
Externí odkaz:
http://arxiv.org/abs/1507.06724
Autor:
Qian, Guohua, Zeng, Yu
Publikováno v:
In Journal of Algebra 15 March 2020 546:553-565