Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Qian, Crystal"'
As large language models (LLMs) become increasingly integrated into society, their alignment with human morals is crucial. To better understand this alignment, we created a large corpus of human- and LLM-generated responses to various moral scenarios
Externí odkaz:
http://arxiv.org/abs/2410.07304
Autor:
Qian, Crystal, Wexler, James
Although recent developments in generative AI have greatly enhanced the capabilities of conversational agents such as Google's Gemini (formerly Bard) or OpenAI's ChatGPT, it's unclear whether the usage of these agents aids users across various contex
Externí odkaz:
http://arxiv.org/abs/2402.18498
As large language models (LLMs) become more advanced and impactful, it is increasingly important to scrutinize the data that they rely upon and produce. What is it to be a dataset practitioner doing this work? We approach this in two parts: first, we
Externí odkaz:
http://arxiv.org/abs/2402.16611
Making sense of unstructured text datasets is perennially difficult, yet increasingly relevant with Large Language Models. Data workers often rely on dataset summaries, especially distributions of various derived features. Some features, like toxicit
Externí odkaz:
http://arxiv.org/abs/2402.14880
Autor:
Luo, Jerry, Paduraru, Cosmin, Voicu, Octavian, Chervonyi, Yuri, Munns, Scott, Li, Jerry, Qian, Crystal, Dutta, Praneet, Davis, Jared Quincy, Wu, Ningjia, Yang, Xingwei, Chang, Chu-Ming, Li, Ted, Rose, Rob, Fan, Mingyan, Nakhost, Hootan, Liu, Tinglin, Kirkman, Brian, Altamura, Frank, Cline, Lee, Tonker, Patrick, Gouker, Joel, Uden, Dave, Bryan, Warren Buddy, Law, Jason, Fatiha, Deeni, Satra, Neil, Rothenberg, Juliet, Waraich, Mandeep, Carlin, Molly, Tallapaka, Satish, Witherspoon, Sims, Parish, David, Dolan, Peter, Zhao, Chenyu, Mankowitz, Daniel J.
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted
Externí odkaz:
http://arxiv.org/abs/2211.07357
Autor:
Chervonyi, Yuri, Dutta, Praneet, Trochim, Piotr, Voicu, Octavian, Paduraru, Cosmin, Qian, Crystal, Karagozler, Emre, Davis, Jared Quincy, Chippendale, Richard, Bajaj, Gautam, Witherspoon, Sims, Luo, Jerry
We present a hybrid industrial cooling system model that embeds analytical solutions within a multi-physics simulation. This model is designed for reinforcement learning (RL) applications and balances simplicity with simulation fidelity and interpret
Externí odkaz:
http://arxiv.org/abs/2207.13131
Autor:
Salganik, Matthew J., Lundberg, Ian, Kindel, Alexander T., Ahearn, Caitlin E., Al-Ghoneim, Khaled, Almaatouq, Abdullah, Altschul, Drew M., Brand, Jennie E., Carnegie, Nicole Bohme, Compton, Ryan James, Datta, Debanjan, Davidson, Thomas, Filippova, Anna, Gilroy, Connor, Goode, Brian J., Jahani, Eaman, Kashyap, Ridhi, Kirchner, Antje, McKay, Stephen, Morgan, Allison C., Pentland, Alex, Polimis, Kivan, Raes, Louis, Rigobon, Daniel E., Roberts, Claudia V., Stanescu, Diana M., Suhara, Yoshihiko, Usmania, Adaner, Wang, Erik H., Adem, Muna, Alhajri, Abdulla, AlShebli, Bedoor, Amin, Redwane, Amos, Ryan B., Argyle, Lisa P., Baer-Bositis, Livia, Büchi, Moritz, Chung, Bo-Ryehn, Eggert, William, Faletto, Gregory, Fan, Zhilin, Freese, Jeremy, Gadgil, Tejomay, Gagné, Josh, Gao, Yue, Halpern-Manners, Andrew, Hashim, Sonia P., Hausen, Sonia, He, Guanhua, Higuera, Kimberly, Hogan, Bernie, Horwitz, Ilana M., Hummel, Lisa M., Jain, Naman, Jin, Kun, Jurgens, David, Kaminski, Patrick, Karapetyan, Areg, Kim, E. H., Leizman, Ben, Liu, Naijia, Möser, Malte, Mack, Andrew E., Mahajan, Mayank, Mandell, Noah, Marahrens, Helge, Mercado-Garcia, Diana, Mocz, Viola, Mueller-Gastell, Katariina, Musse, Ahmed, Niu, Qiankun, Nowak, William, Omidvar, Hamidreza, Or, Andrew, Ouyang, Karen, Pinto, Katy M., Porter, Ethan, Porter, Kristin E., Qian, Crystal, Rauf, Tamkinat, Sargsyan, Anahit, Schaffner, Thomas, Schnabel, Landon, Schonfeld, Bryan, Sender, Ben, Tang, Jonathan D., Tsurkov, Emma, van Loon, Austin, Varol, Onur, Wang, Xiafei, Wang, Zhi, Wang, Julia, Wang, Flora, Weissman, Samantha, Whitaker, Kirstie, Wolters, Maria K., Woon, Wei Lee, Wu, James, Wu, Catherine, Yang, Kengran, Yin, Jingwen, Zhao, Bingyu, Zhu, Chenyun, Brooks-Gunn, Jeanne, Engelhardt, Barbara E., Hardt, Moritz, Knox, Dean, Levy, Karen, Narayanan, Arvind, Stewart, Brandon M., Watts, Duncan J., McLanahan, Sara
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2020 Apr . 117(15), 8398-8403.
Externí odkaz:
https://www.jstor.org/stable/26930891
Autor:
Salganik, Matthew J, Lundberg, Ian, Kindel, Alexander T, Ahearn, Caitlin E, Al-Ghoneim, Khaled, Almaatouq, Abdullah, Altschul, Drew M, Brand, Jennie E, Carnegie, Nicole Bohme, Compton, Ryan James, Datta, Debanjan, Davidson, Thomas, Filippova, Anna, Gilroy, Connor, Goode, Brian J, Jahani, Eaman, Kashyap, Ridhi, Kirchner, Antje, McKay, Stephen, Morgan, Allison C, Pentland, Alex, Polimis, Kivan, Raes, Louis, Rigobon, Daniel E, Roberts, Claudia V, Stanescu, Diana M, Suhara, Yoshihiko, Usmani, Adaner, Wang, Erik H, Adem, Muna, Alhajri, Abdulla, AlShebli, Bedoor, Amin, Redwane, Amos, Ryan B, Argyle, Lisa P, Baer-Bositis, Livia, Büchi, Moritz, Chung, Bo-Ryehn, Eggert, William, Faletto, Gregory, Fan, Zhilin, Freese, Jeremy, Gadgil, Tejomay, Gagné, Josh, Gao, Yue, Halpern-Manners, Andrew, Hashim, Sonia P, Hausen, Sonia, He, Guanhua, Higuera, Kimberly, Hogan, Bernie, Horwitz, Ilana M, Hummel, Lisa M, Jain, Naman, Jin, Kun, Jurgens, David, Kaminski, Patrick, Karapetyan, Areg, Kim, EH, Leizman, Ben, Liu, Naijia, Möser, Malte, Mack, Andrew E, Mahajan, Mayank, Mandell, Noah, Marahrens, Helge, Mercado-Garcia, Diana, Mocz, Viola, Mueller-Gastell, Katariina, Musse, Ahmed, Niu, Qiankun, Nowak, William, Omidvar, Hamidreza, Or, Andrew, Ouyang, Karen, Pinto, Katy M, Porter, Ethan, Porter, Kristin E, Qian, Crystal, Rauf, Tamkinat, Sargsyan, Anahit, Schaffner, Thomas, Schnabel, Landon, Schonfeld, Bryan, Sender, Ben, Tang, Jonathan D, Tsurkov, Emma, van Loon, Austin, Varol, Onur, Wang, Xiafei, Wang, Zhi, Wang, Julia, Wang, Flora, Weissman, Samantha, Whitaker, Kirstie, Wolters, Maria K, Woon, Wei Lee, Wu, James, Wu, Catherine, Yang, Kengran
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, vol 117, iss 15
How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing S
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::c9005ffd4c99fd47d214fb985a17a2f4
https://escholarship.org/uc/item/8h64g0bp
https://escholarship.org/uc/item/8h64g0bp
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.