Zobrazeno 1 - 10
of 104
pro vyhledávání: '"Qazani, Mohammad Reza Chalak"'
Autor:
Khan, Mehshan Ahmed, Asadi, Houshyar, Qazani, Mohammad Reza Chalak, Arogbonlo, Adetokunbo, Nahavandi, Saeid, Lim, Chee Peng
One debatable issue in traffic safety research is that cognitive load from sec-ondary tasks reduces primary task performance, such as driving. Although physiological signals have been extensively used in driving-related research to assess cognitive l
Externí odkaz:
http://arxiv.org/abs/2408.06350
Autor:
Khan, Mehshan Ahmed, Asadi, Houshyar, Qazani, Mohammad Reza Chalak, Lim, Chee Peng, Nahavandi, Saied
Motion simulators allow researchers to safely investigate the interaction of drivers with a vehicle. However, many studies that use driving simulator data to predict cognitive load only employ two levels of workload, leaving a gap in research on empl
Externí odkaz:
http://arxiv.org/abs/2408.06349
Autor:
Khan, Mehshan Ahmed, Asadi, Houshyar, Qazani, Mohammad Reza Chalak, Arogbonlo, Adetokunbo, Pedrammehr, Siamak, Anwar, Adnan, Bhatti, Asim, Nahavandi, Saeid, Lim, Chee Peng
Functional near-infrared spectroscopy (fNIRS) is employed as a non-invasive method to monitor functional brain activation by capturing changes in the concentrations of oxygenated haemoglobin (HbO) and deoxygenated haemo-globin (HbR). Various machine
Externí odkaz:
http://arxiv.org/abs/2407.15901
Autor:
Kabir, H M Dipu, Mondal, Subrota Kumar, Khanam, Sadia, Khosravi, Abbas, Rahman, Shafin, Qazani, Mohammad Reza Chalak, Alizadehsani, Roohallah, Asadi, Houshyar, Mohamed, Shady, Nahavandi, Saeid, Acharya, U Rajendra
Publikováno v:
Applied Soft Computing, 2023
Researchers have proposed several approaches for neural network (NN) based uncertainty quantification (UQ). However, most of the approaches are developed considering strong assumptions. Uncertainty quantification algorithms often perform poorly in an
Externí odkaz:
http://arxiv.org/abs/2304.14925
Autor:
Moayyedian, Mehdi1 (AUTHOR), Qazani, Mohammad Reza Chalak2 (AUTHOR), Amirkhizi, Parisa Jourabchi3 (AUTHOR), Asadi, Houshyar4 (AUTHOR), Hedayati-Dezfooli, Mohsen5 (AUTHOR) mohsen.hedayati@udst.edu.qa
Publikováno v:
Scientific Reports. 10/10/2024, Vol. 14 Issue 1, p1-15. 15p.
Autor:
Khanam, Sadia, Qazani, Mohammad Reza Chalak, Mondal, Subrota Kumar, Kabir, H M Dipu, Sabyasachi, Abadhan S., Asadi, Houshyar, Kumar, Keshav, Tabarsinezhad, Farzin, Mohamed, Shady, Khorsavi, Abbas, Nahavandi, Saeid
This paper proposes transferred initialization with modified fully connected layers for COVID-19 diagnosis. Convolutional neural networks (CNN) achieved a remarkable result in image classification. However, training a high-performing model is a very
Externí odkaz:
http://arxiv.org/abs/2209.09556
Autor:
Khan, Mehshan Ahmed, Asadi, Houshyar, Zhang, Li, Qazani, Mohammad Reza Chalak, Oladazimi, Sam, Loo, Chu Kiong, Lim, Chee Peng, Nahavandi, Saeid
Publikováno v:
In Expert Systems With Applications 1 September 2024 249 Part C
Autor:
Qazani, Mohammad Reza Chalak, Asadi, Houshyar, Najdovski, Zoran, Alsanwy, Shehab, Zakarya, Muhammad, Alam, Furqan, Ouakad, Hassen M., Lim, Chee Peng, Nahavandi, Saeid
Publikováno v:
In Cognitive Robotics 2024 4:116-127
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of the Taiwan Institute of Chemical Engineers October 2023 151