Zobrazeno 1 - 10
of 69
pro vyhledávání: '"QUINLAN, RACHEL"'
Autor:
O'Brien, Cian, Quinlan, Rachel
We investigate multiplicative groups consisting entirely of singular alternating sign matrices (ASMs), and present several constructions of such groups. It is shown that every finite group is isomorphic to a group of singular ASMs, with a singular id
Externí odkaz:
http://arxiv.org/abs/2405.13611
Autor:
O'Brien, Cian, Quinlan, Rachel
We investigate alternating sign matrices that are not permutation matrices, but have finite order in a general linear group. We classify all such examples of the form $P+T$, where $P$ is a permutation matrix and $T$ has four non-zero entries, forming
Externí odkaz:
http://arxiv.org/abs/2110.02024
Let $R$ be a ring and let $(a_1,\dots,a_n)\in R^n$ be a unimodular vector, where $n\geq 2$ and each $a_i$ is in the center of $R$. Consider the linear equation $a_1X_1+\cdots+a_nX_n=0$, with solution set $S$. Then $S=S_1+\cdots+S_n$, where each $S_i$
Externí odkaz:
http://arxiv.org/abs/2107.02705
We investigate a class of 2-edge coloured bipartite graphs known as alternating signed bipartite graphs (ASBGs) that encode the information in alternating sign matrices. The central question is when a given bipartite graph admits an ASBG-colouring; a
Externí odkaz:
http://arxiv.org/abs/1911.10869
Autor:
O'Brien, Cian, Quinlan, Rachel
Publikováno v:
In Linear Algebra and Its Applications 15 October 2022 651:332-358
We study the classification problem of possibly degenerate hermitian and skew hermitian bilinear forms over local rings where 2 is a unit.
Externí odkaz:
http://arxiv.org/abs/1705.01562
Publikováno v:
In Linear Algebra and Its Applications 1 November 2020 604:370-398
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ha Van, Hieu, Quinlan, Rachel
Publikováno v:
In Linear Algebra and Its Applications 1 October 2019 578:334-355