Zobrazeno 1 - 10
of 679
pro vyhledávání: '"QUANTUM RENORMALIZATION-GROUPS"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Frank Verstraete, Laurens Vanderstraeten, Jutho Haegeman, Matthew Fishman, Valentin Zauner-Stauber
Publikováno v:
PHYSICAL REVIEW B
Physical Review B
Physical Review B
We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State tangent space concepts to construct a variational algorithm for finding ground states of one dimensional quantum lattices in the thermodynamic limit. A careful compa
Publikováno v:
PHYSICAL REVIEW B
Density matrix embedding theory (DMET) is a relatively new technique for the calculation of strongly correlated systems. Recently, block product DMET (BPDMET) was introduced for the study of spin systems such as the antiferromagnetic $J_1 - J_2$ mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9d7d883050618519dff18cb0a92e7e6
https://hdl.handle.net/1854/LU-8532327
https://hdl.handle.net/1854/LU-8532327
Publikováno v:
PHYSICAL REVIEW B
We consider a model of strongly correlated electrons in 1D called the $t\text{\ensuremath{-}}J$ model, which was solved by the graded algebraic Bethe ansatz. We use it to design graded tensor networks which can be contracted approximately to obtain a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b3d90a953ca7b509733006b027df333
https://hdl.handle.net/1854/LU-8677533
https://hdl.handle.net/1854/LU-8677533
Publikováno v:
PHYSICAL REVIEW B
Physical Review B
Physical Review B
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimisation methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time-ev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32bfaba36a8bc454e11fad7130065154
Publikováno v:
PHYSICAL REVIEW B
We improve a recently developed expansion technique for calculating real frequency spectral functions of any one-dimensional model with short-range interactions, by postprocessing computed Chebyshev moments with linear prediction. This can be achieve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b728116105a560f28fd9be7c210feb2
https://biblio.ugent.be/publication/8152484
https://biblio.ugent.be/publication/8152484
Publikováno v:
PHYSICAL REVIEW B
Physical Review B
Physical Review B 88 (2013), Nr. 7
Physical Review B
Physical Review B 88 (2013), Nr. 7
We develop in full detail the formalism of tangent states to the manifold of matrix product states, and show how they naturally appear in studying time-evolution, excitations and spectral functions. We focus on the case of systems with translation in
Publikováno v:
Physical Review B
Physical Review B 88 (2013), Nr. 8
PHYSICAL REVIEW B
Physical Review B 88 (2013), Nr. 8
PHYSICAL REVIEW B
We discuss various properties of the variational class of continuous matrix product states, a class of ansatz states for one-dimensional quantum fields that was recently introduced as the direct continuum limit of the highly successful class of matri
Publikováno v:
Physical Review B
PHYSICAL REVIEW B
PHYSICAL REVIEW B
The algebraic Bethe ansatz is a prosperous and well-established method for solving one-dimensional quantum models exactly. The solution of the complex eigenvalue problem is thereby reduced to the solution of a set of algebraic equations. Whereas the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4dc1a636f570d7460d13faa96cd38ca7
https://zenodo.org/record/853180
https://zenodo.org/record/853180
Publikováno v:
Journal of Mathematical Physics
JOURNAL OF MATHEMATICAL PHYSICS
JOURNAL OF MATHEMATICAL PHYSICS
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4371e67f88aa8e1691b288ec4429ff8d