Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Pypka, A. A."'
The article presents the structure of the automorphism groups of two types of non-nilpotent Leibniz algebras with a dimension of 3.
Externí odkaz:
http://arxiv.org/abs/2407.14692
One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations an
Externí odkaz:
http://arxiv.org/abs/2404.17741
Autor:
Minaiev, P. Ye., Pypka, O. O.
One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations an
Externí odkaz:
http://arxiv.org/abs/2404.17740
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. The structure of the
Externí odkaz:
http://arxiv.org/abs/2310.11180
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformati
Externí odkaz:
http://arxiv.org/abs/2305.00592
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all $a,b,c\in L$. We describe the inner structure of left Leibniz algebras having dimens
Externí odkaz:
http://arxiv.org/abs/2211.01074
Publikováno v:
Researches in Mathematics, Vol 32, Iss 1, Pp 101-109 (2024)
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of
Externí odkaz:
https://doaj.org/article/e035b222c14c4e4084332d750cacf737
Publikováno v:
Researches in Mathematics, Vol 32, Iss 1, Pp 118-133 (2024)
One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations an
Externí odkaz:
https://doaj.org/article/ce49fa4ff726432391f317ac07b33677
We study the automorphism groups of finite-dimensional cyclic Leibniz algebras. In this connection, we consider the relationships between groups, modules over associative rings and Leibniz algebras.
Comment: arXiv admin note: text overlap with a
Comment: arXiv admin note: text overlap with a
Externí odkaz:
http://arxiv.org/abs/2108.06794
Autor:
Pypka, Aleksandr A.
The purpose of this article is to show a close relationship between the generalized central series of Leibniz algebras. Some analogues of the classical group-theoretical theorems of Schur and Baer for Leibniz algebras are proved.
Externí odkaz:
http://arxiv.org/abs/2105.02610