Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Puyang Wang"'
Autor:
Xirui Hou, Pengfei Guo, Puyang Wang, Peiying Liu, Doris D. M. Lin, Hongli Fan, Yang Li, Zhiliang Wei, Zixuan Lin, Dengrong Jiang, Jin Jin, Catherine Kelly, Jay J. Pillai, Judy Huang, Marco C. Pinho, Binu P. Thomas, Babu G. Welch, Denise C. Park, Vishal M. Patel, Argye E. Hillis, Hanzhang Lu
Publikováno v:
npj Digital Medicine, Vol 6, Iss 1, Pp 1-13 (2023)
Abstract Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at pre
Externí odkaz:
https://doaj.org/article/0bab96e6136c4a51ad2f136cc4509946
Autor:
Xavier Amatriain, Yogesh Balaji, Stefan Bekiranov, Vasileios Belagiannis, Anas-Alexis Benyoussef, Gustavo Carneiro, Manish Chablani, Cheng Chen, Hyun Jae Cho, Jingyuan Chou, Béatrice Cochener, Pierre-Henri Conze, Youssef Dawoud, Thanh-Toan Do, Qi Dou, Azade Farshad, Chi-Wing Fu, Abhijit Guha Roy, Pengfei Guo, Pheng-Ann Heng, Hieu Hoang, Shanshan Jiang, Yueming Jin, Anitha Kannan, Jieum Kim, Mathieu Lamard, Ngan Le, Patrick Le Callet, Alexandre Le Guilcher, Xiaomeng Li, Suiyi Ling, Quande Liu, Pascale Massin, Sarah Matta, Aryan Mobiny, Jacinto C. Nascimento, Nassir Navab, Cuong C. Nguyen, Hien Van Nguyen, Andreas Pastor, Vishal M. Patel, Angshuman Paul, Sebastian Pölsterl, Viraj Prabhu, Gwenolé Quellec, Murali Ravuri, Vincent Ricquebourg, Jean-Bernard Rottier, Swami Sankaranarayanan, Thomas C. Shen, Shayan Siddiqui, David Sontag, Ronald M. Summers, Qiuling Suo, Yu-Xing Tang, Minh-Triet Tran, Viet-Khoa Vo-Ho, Christian Wachinger, Puyang Wang, Lei Xing, Kashu Yamazaki, Yousef Yeganeh, Lequan Yu, Pengyu Yuan, Chongzhi Zang, Aidong Zhang, Jinyuan Zhou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::916d13d8d88bbe77a0b12610fd47b5b9
https://doi.org/10.1016/b978-0-32-399851-2.00006-5
https://doi.org/10.1016/b978-0-32-399851-2.00006-5
Autor:
Rajeev Yasarla, Jeya Maria Jose Valanarasu, Ilker Hacihaliloglu, Vishal M. Patel, Puyang Wang
Publikováno v:
IEEE Journal of Selected Topics in Signal Processing. 14:1221-1234
Automatic segmentation of anatomical landmarks from ultrasound (US) plays an important role in the management of preterm neonates with a very low birth weight due to the increased risk of developing intraventricular hemorrhage (IVH) or other complica
Publikováno v:
International Journal of Computer Assisted Radiology and Surgery. 15:1127-1135
Automatic bone surfaces segmentation is one of the fundamental tasks of ultrasound (US)-guided computer-assisted orthopedic surgery procedures. However, due to various US imaging artifacts, manual operation of the transducer during acquisition, and d
Publikováno v:
IEEE transactions on medical imaging. 41(8)
Fast and accurate MRI image reconstruction from undersampled data is crucial in clinical practice. Deep learning based reconstruction methods have shown promising advances in recent years. However, recovering fine details from undersampled data is st
Autor:
Dazhou Guo, Jia Ge, Ke Yan, Puyang Wang, Zhuotun Zhu, Dandan Zheng, Xian-Sheng Hua, Le Lu, Tsung-Ying Ho, Xianghua Ye, Dakai Jin
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164422
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d6a7a6f8385e7466b15ce91902ca53a7
https://doi.org/10.1007/978-3-031-16443-9_6
https://doi.org/10.1007/978-3-031-16443-9_6
Autor:
Shanshan Jiang, Jinyuan Zhou, Puyang Wang, Vishal M. Patel, Pengfei Guo, Jeya Maria Jose Valanarasu
Publikováno v:
Med Image Comput Comput Assist Interv
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 ISBN: 9783030872304
MICCAI (6)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 ISBN: 9783030872304
MICCAI (6)
Reconstructing magnetic resonance (MR) images from under-sampled data is a challenging problem due to various artifacts introduced by the under-sampling operation. Recent deep learning-based methods for MR image reconstruction usually leverage a gene
Publikováno v:
IEEE Trans Med Imaging
Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b11deaaec2c9ee03479fa1eb3fcd417b
https://europepmc.org/articles/PMC8543492/
https://europepmc.org/articles/PMC8543492/
Publikováno v:
CVPR
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruc