Zobrazeno 1 - 10
of 298
pro vyhledávání: '"Puthenpurakal, Tony. J."'
Let $(A,\mathfrak{m})$ be a complete intersection ring of codimension $c\geq 2$ and dimension $d\geq 1$. Let $M$ be a finitely generated maximal Cohen-Macaulay $A$-module. Set $M_i=\text{Syz}^A_{i}(M)$. Let $e^{\mathfrak{m}}_i(M)$ be the $i$-th Hilbe
Externí odkaz:
http://arxiv.org/abs/2412.05860
Autor:
Puthenpurakal, Tony J.
Let $K$ be a field and let $R = K[X_1, \ldots, X_m]$ with $m \geq 2$. Give $R$ the standard grading. Let $I$ be a homogeneous ideal of height $g$. Assume $1 \leq g \leq m -1$. Suppose $H^i_I(R) \neq 0$ for some $i \geq 0$. We show (1) $H^i_I(R)_n \ne
Externí odkaz:
http://arxiv.org/abs/2411.13090
Autor:
Puthenpurakal, Tony J.
In this paper we consider projective and injective resolutions of Koszul complexes and give several applications to the study of Koszul homology modules.
Externí odkaz:
http://arxiv.org/abs/2411.01959
Autor:
Puthenpurakal, Tony J.
Let $R$ be a regular ring of dimension $d$ containing a field $K$ of characteristic zero. If $E$ is an $R$-module let $Ass^i E = \{ Q \in \ Ass E \mid \ height Q = i \}$. Let $P$ be a prime ideal in $R$ of height $g$. We show that if $R/P$ satisfies
Externí odkaz:
http://arxiv.org/abs/2410.18493
Autor:
Puthenpurakal, Tony J.
Let $(Q, \mathfrak{n})$ be a regular local ring and let $f_1, \ldots, f_c \in \mathfrak{n}^2$ be a $Q$-regular sequence. Set $(A, \mathfrak{m}) = (Q/(\mathbf{f}), \mathfrak{n}/(\mathbf{f}))$. Further assume that the initial forms $f_1^*, \ldots, f_c^
Externí odkaz:
http://arxiv.org/abs/2409.11877
Autor:
Puthenpurakal, Tony J.
Let $K$ be a field and let $S = K[X_1, \ldots, X_n]$. Let $I$ be a graded ideal in $S$ and let $M$ be a finitely generated graded $S$-module. We give upper bounds on the regularity of Koszul homology modules $H_i(I, M)$ for several classes of $I$ and
Externí odkaz:
http://arxiv.org/abs/2409.11840
Autor:
Puthenpurakal, Tony J.
Let $(A,\mathfrak{m})$ be an excellent normal local ring of dimension $d \geq 2$ with infinite residue field. Let $I$ be an $\mathfrak{m}$-primary ideal. Then the following assertions are equivalent: (i) The extended Rees algebra $A[It, t^{-1}]$ is $
Externí odkaz:
http://arxiv.org/abs/2408.05532
Let $K$ be a field of characteristic 0 and $S=K[x_1,\ldots,x_m]/I$ be an affine domain. Consider $R=S_P$ where $P\in Spec(S)$ such that $R$ is regular. In this paper we construct a field $F$ which is contained in $R$ such that (1) The residue field o
Externí odkaz:
http://arxiv.org/abs/2406.05390
Let $(A,\mathfrak{m})$ be an analytically un-ramified Noetherian local ring of dimension $d \geq 1$, $I$ a regular $\mathfrak{m}$-primary ideal of $A$ and let $\overline{I}$ be integral closure ideal of $I$. If $A$ is of characteristic $p > 0$ then l
Externí odkaz:
http://arxiv.org/abs/2405.20647
Autor:
Puthenpurakal, Tony J.
Let $A$ be a Noetherian ring of dimension $d$ and let $\mathcal{D}^b(A)$ be the bounded derived category of $A$. Let $\mathcal{D}_i^b(A)$ denote the thick subcategory of $\mathcal{D}^b(A)$ consisting of complexes $\mathbf{X}_\bullet$ with $\dim H^n(\
Externí odkaz:
http://arxiv.org/abs/2405.11991