Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Puel, Marjolaine"'
Autor:
Dechicha, Dahmane, Puel, Marjolaine
In this paper, we extend the spectral method developed \cite{DP} to any dimension $d\geqslant 1$, in order to construct an eigen-solution for the Fokker-Planck operator with heavy tail equilibria, of the form $(1+|v|^2)^{-\frac{\beta}{2}}$, in the ra
Externí odkaz:
http://arxiv.org/abs/2303.07162
Autor:
Dechicha, Dahmane, Puel, Marjolaine
This paper is devoted to the construction of an \emph{eigen-solution} for the Fokker-Planck operator with heavy tail equilibrium. We propose an \textit{alternative} method in dimension 1, which will be generalizable in higher dimension. The later met
Externí odkaz:
http://arxiv.org/abs/2303.07159
We investigate the fractional diffusion approximation of a kinetic equation set in a bounded interval with diffusive reflection conditions at the boundary. In an appropriate singular limit corresponding to small Knudsen number and long time asymptoti
Externí odkaz:
http://arxiv.org/abs/2107.01011
Autor:
Dechicha, Dahmane1 (AUTHOR) dechicha@unice.fr, Puel, Marjolaine2 (AUTHOR) mpuel@cyu.fr
Publikováno v:
Asymptotic Analysis. 2024, Vol. 136 Issue 2, p79-132. 54p.
We investigate the fractional diffusion approximation of a kinetic equation in the upper-half plane with diffusive reflection conditions at the boundary. In an appropriate singular limit corresponding to small Knudsen number and long time asymptotic,
Externí odkaz:
http://arxiv.org/abs/1805.04903
Autor:
Lebeau, Gilles, Puel, Marjolaine
This paper is devoted to the diffusion approximation for the 1-d Fokker Planck equation with a heavy tail equilibria of the form (1+v^2)^{-\beta/2}, in the range beta\in ]1,5[. We prove that the limit diffusion equation involves a fractional Laplacia
Externí odkaz:
http://arxiv.org/abs/1711.03060
Autor:
Puel, Marjolaine, Vasseur, Alexis F.
In this article, the authors prove the existence of global weak solutions to the inviscid three-dimensional quasi-geostrophic equation. This equation models the evolution of the temperature on the surface of the earth. It is widely used in geophysics
Externí odkaz:
http://arxiv.org/abs/1412.4522
This paper concerns the diffusion-homogenization of transport equations when both the adimensionalized scale of the heterogeneities $\alpha$ and the adimensionalized mean-free path $\eps$ converge to 0. When $\alpha=\eps$, it is well known that the h
Externí odkaz:
http://arxiv.org/abs/1201.4424
Autor:
Dechicha, Dahmane, Puel, Marjolaine
This paper is devoted to the construction of an \emph{eigen-solution} for the Fokker-Planck operator with heavy tail equilibrium. We propose an \textit{alternative} method in dimension 1, which will be generalizable in higher dimension. The later met
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a7a83e54394ff04dbc7af27a1b43fcd
http://arxiv.org/abs/2303.07159
http://arxiv.org/abs/2303.07159
Autor:
Dechicha, Dahmane, Puel, Marjolaine
In this paper, we extend the spectral method developed \cite{DP} to any dimension $d\geqslant 1$, in order to construct an eigen-solution for the Fokker-Planck operator with heavy tail equilibria, of the form $(1+|v|^2)^{-\frac{\beta}{2}}$, in the ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e609e37d163e1de71764dce91d457e1a