Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Puck Rombach"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 44, Iss 1, p 127 (2024)
Externí odkaz:
https://doaj.org/article/4860ab1240a34cf9b94b1a6ee3297aca
Publikováno v:
Discrete Mathematics Letters, Vol 11, Pp 96-98 (2023)
Externí odkaz:
https://doaj.org/article/e20e2eacac774af1bccb1cd7e7e2984c
Publikováno v:
Theory and Applications of Graphs, Vol 10, Iss 2 (2023)
A simple graph G = (V,E) on n vertices is said to be recursively partitionable (RP) if G ≃ K1, or if G is connected and satisfies the following recursive property: for every integer partition a1, a2, . . . , ak of n, there is a partition {A1,A2, .
Externí odkaz:
https://doaj.org/article/ce22665b971346a3870b07947bef4d0c
Autor:
Christopher Purcell, M. Puck Rombach
Publikováno v:
Theoretical Computer Science. 876:12-24
A locally surjective homomorphism from a graph G to a graph H is called an H-role colouring of G. Deciding the existence of such a colouring with | H | = k is known to be NP-hard even under substantial restrictions on the input graph G. We study the
Autor:
Calum Buchanan, Alexander Clifton, Eric Culver, Jiaxi Nie, Jason O'Neill, Puck Rombach, Mei Yin
Given a finite simple graph $G$, an odd cover of $G$ is a collection of complete bipartite graphs, or bicliques, in which each edge of $G$ appears in an odd number of bicliques and each non-edge of $G$ appears in an even number of bicliques. We denot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cfac7d7164ff7def78dd0c03f256949
Autor:
Noa Pinter-Wollman, Nina H. Fefferman, Saray Shai, Daniel B. Larremore, Matthew J. Silk, Elizabeth A. Hobson, M. Puck Rombach
Publikováno v:
Biological reviews of the Cambridge Philosophical Society, vol 96, iss 6
Analyzing social networks is challenging. Key features of relational data require the use of non-standard statistical methods such as developing system-specific null, or reference, models that randomize one or more components of the observed data. He
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6301b6e82634218d653a576deec28683
https://escholarship.org/uc/item/3s696912
https://escholarship.org/uc/item/3s696912
Any finite simple graph $G = (V,E)$ can be represented by a collection $\mathscr{C}$ of subsets of $V$ such that $uv\in E$ if and only if $u$ and $v$ appear together in an odd number of sets in $\mathscr{C}$. Let $c_2(G)$ denote the minimum cardinali
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f74f8cef9cc7c08b0cffd26cd7d0b0d
http://arxiv.org/abs/2101.06180
http://arxiv.org/abs/2101.06180
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783030779825
The Mycielskian construction, denoted μ(G), takes a finite simple graph G to a larger graph with of the same clique number but larger chromatic number. The generalized Mycielskian construction, denoted μt(G), takes G to a larger graph with the same
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fe23aec1a81106473b67b840fde69664
https://doi.org/10.1007/978-3-030-77983-2_5
https://doi.org/10.1007/978-3-030-77983-2_5
Autor:
Danielle S Bassett, Nicholas F Wymbs, M Puck Rombach, Mason A Porter, Peter J Mucha, Scott T Grafton
Publikováno v:
PLoS Computational Biology, Vol 9, Iss 9, p e1003171 (2013)
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify
Externí odkaz:
https://doaj.org/article/9d2226d25df84d7ca963e2b76d6511da
Autor:
Jo Martin, Puck Rombach
For a given number of colors, $s$, the guessing number of a graph is the (base $s$) logarithm of the cardinality of the largest family of colorings of the vertex set of the graph such that the color of each vertex can be determined from the colors of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::856aa29ddac2ccd4ee0ba0cef7851a06
http://arxiv.org/abs/2009.04529
http://arxiv.org/abs/2009.04529