Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Pu Yi-Fei"'
Publikováno v:
IEEE Access, Vol 8, Pp 109038-109053 (2020)
Images captured under varying light conditions have deficient contrast, low brightness, latent colors, and high noise. Numerous methods have been developed for image enhancement. However, these methods are only suitable for enhancing specific type of
Externí odkaz:
https://doaj.org/article/90002193258446e19f63d0535f4b28de
Publikováno v:
In Signal Processing July 2024 220
Autor:
PU Yi-Fei
Publikováno v:
Journal of Algorithms & Computational Technology, Vol 1 (2007)
This paper discusses the capabilities of the fractional differential approach for the detection of textural features in two-dimensional digital images and the involved Lateral Inhibition Principle, and fractional differential masks and algorithms of
Externí odkaz:
https://doaj.org/article/d73c71c6f670483aa7c87aaafaf17679
Publikováno v:
In Mechanical Systems and Signal Processing 1 January 2024 206
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Signal Processing November 2023 212
Autor:
Cai, Xin, Pu, Yi-Fei
Publikováno v:
IEEE Access, vol. 7, pp. 179985-179996, 2019
In this paper, we focus on devising a versatile framework for dense pixelwise prediction whose goal is to assign a discrete or continuous label to each pixel for an image. It is well-known that the reduced feature resolution due to repeated subsampli
Externí odkaz:
http://arxiv.org/abs/1909.09961
Autor:
PU, Yi-Fei, Wang, Jian
This paper offers a novel mathematical approach, the modified Fractional-order Steepest Descent Method (FSDM) for training BackPropagation Neural Networks (BPNNs); this differs from the majority of the previous approaches and as such. A promising mat
Externí odkaz:
http://arxiv.org/abs/1906.09524
Publikováno v:
In Neurocomputing 7 January 2023 516:155-168
Publikováno v:
In Neural Networks January 2023 158:154-170