Zobrazeno 1 - 10
of 495
pro vyhledávání: '"Pseudo-relevance feedback"'
Publikováno v:
Journal of Universal Computer Science, Vol 30, Iss 11, Pp 1511-1528 (2024)
Traditional information retrieval models mostly adopt a term independence assumption and are based on single terms or unigrams. Past efforts have attempted to go beyond this assumption, such as by using contiguous terms (i.e. word n-grams) or terms a
Externí odkaz:
https://doaj.org/article/b99ae8bcfb844daf80e1c15481746af8
Autor:
Singh, Pankaj a, Bhowmick, Plaban Kumar b, ⁎
Publikováno v:
In Journal of Web Semantics January 2025 84
Autor:
Pan, Min a, Zhou, Shuting a, Chen, Jinguang a, b, ⁎, Huang, Ellen Anne c, Huang, Jimmy X. d, ⁎
Publikováno v:
In Information Processing and Management May 2025 62(3)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Information Science Theory and Practice, Vol 9, Iss 2, Pp 1-17 (2021)
Pseudo relevance feedback (PRF) is a powerful query expansion (QE) technique that prepares queries using the top k pseudo-relevant documents and choosing expansion elements. Traditional PRF frameworks have robustly handled vocabulary mismatch corresp
Externí odkaz:
https://doaj.org/article/96c5036256d24ff082af6783850790d1
Publikováno v:
Future Internet, Vol 15, Iss 5, p 180 (2023)
In the two-stage open-domain question answering (OpenQA) systems, the retriever identifies a subset of relevant passages, which the reader then uses to extract or generate answers. However, the performance of OpenQA systems is often hindered by issue
Externí odkaz:
https://doaj.org/article/2c0accc743bc4eef83e381b3800599d7
Autor:
Handong Ma, Jiawei Hou, Chenxu Zhu, Weinan Zhang, Ruiming Tang, Jincai Lai, Jieming Zhu, Xiuqiang He, Yong Yu
Publikováno v:
IEEE Access, Vol 9, Pp 139303-139314 (2021)
Pseudo relevance feedback (PRF) automatically performs query expansion based on top-retrieved documents to better represent the user’s information need so as to improve the search results. Previous PRF methods mainly select expansion terms with hig
Externí odkaz:
https://doaj.org/article/b8744408d70d43ff8dc003af2ab2dcb8
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 19, Iss S9, Pp 1-11 (2019)
Abstract Background In order to better help doctors make decision in the clinical setting, research is necessary to connect electronic health record (EHR) with the biomedical literature. Pseudo Relevance Feedback (PRF) is a kind of classical query mo
Externí odkaz:
https://doaj.org/article/2b12f3a4ece34d639476059ccf0f1ebd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wei-Chao Lin
Publikováno v:
IEEE Access, Vol 7, Pp 147553-147559 (2019)
Image retrieval effectiveness can be improved by pseudo relevance feedback (PRF), which automatically uses top-$k$ images of the initial retrieval result as the pseudo feedback. Since there are several different strategies for performing PRF leading
Externí odkaz:
https://doaj.org/article/45cb93a0b28744ea86d6a1ae9edef099