Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Przezdziecki, Tomasz"'
Autor:
Przezdziecki, Tomasz, Li, Jian-Rong
Let $(\mathbf{U}, \mathbf{U}^\imath)$ be a split affine quantum symmetric pair of type $\mathsf{B}_n^{(1)}, \mathsf{C}_n^{(1)}$ or $\mathsf{D}_n^{(1)}$. We prove factorization and coproduct formulae for the Drinfeld-Cartan operators $\Theta_i(z)$ in
Externí odkaz:
http://arxiv.org/abs/2406.19303
Autor:
Przezdziecki, Tomasz
We formulate a precise connection between the new Drinfeld presentation of a quantum affine algebra $U_q\widehat{\mathfrak{g}}$ and the new Drinfeld presentation of affine coideal subalgebras of split type recently discovered by Lu and Wang. In parti
Externí odkaz:
http://arxiv.org/abs/2311.13705
Autor:
Appel, Andrea, Przezdziecki, Tomasz
Publikováno v:
Advances in Mathematics 435B (2023)
Let $\mathfrak{g}$ be a complex simple Lie algebra and $U_qL\mathfrak{g}$ the corresponding quantum affine algebra. We construct a functor ${}^{\theta}{\sf F}$ between finite-dimensional modules over a quantum symmetric pair of affine type $U_q\mathf
Externí odkaz:
http://arxiv.org/abs/2204.04123
Autor:
Przezdziecki, Tomasz
Publikováno v:
Pacific J. Math. 322 (2023) 407-441
We consider an "orientifold" generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pai
Externí odkaz:
http://arxiv.org/abs/2110.01473
Autor:
Appel, Andrea, Przeździecki, Tomasz
Publikováno v:
In Advances in Mathematics 15 December 2023 435 Part B
Autor:
Przezdziecki, Tomasz
We establish a connection between a generalization of KLR algebras, called quiver Schur algebras, and the cohomological Hall algebras of Kontsevich and Soibelman. More specifically, we realize quiver Schur algebras as algebras of multiplication and c
Externí odkaz:
http://arxiv.org/abs/1907.03679
Autor:
Przezdziecki, Tomasz
Publikováno v:
Transformation Groups 27 (2022), 659-722
In this paper we define and study a critical-level generalization of the Suzuki functor, relating the affine general linear Lie algebra to the rational Cherednik algebra of type A. Our main result states that this functor induces a surjective algebra
Externí odkaz:
http://arxiv.org/abs/1810.12226
Autor:
Przezdziecki, Tomasz
Publikováno v:
Journal of Algebra 556 (2020), 936-992
In this paper we study the combinatorial consequences of the relationship between rational Cherednik algebras of type $G(l,1,n)$, cyclic quiver varieties and Hilbert schemes. We classify and explicitly construct $\mathbb{C}^*$-fixed points in cyclic
Externí odkaz:
http://arxiv.org/abs/1610.03920
Autor:
Przezdziecki, Tomasz
Publikováno v:
Pacific Journal of Mathematics. 322:407-441
We consider an "orientifold" generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pai
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.