Zobrazeno 1 - 10
of 147
pro vyhledávání: '"Przebinda, T."'
We consider the dual pair $(G,G')=(\mathrm{U}_l,\mathrm{U}_{l'})$ in the symplectic group $\mathrm{Sp}_{2ll'}(\mathbb{R})$. Fix a Weil representation of the metaplectic group $\tilde{\mathrm{Sp}}_{2ll'}(\mathbb{R})$. Let $\tilde{G\,}$ and $\tilde{G'}
Externí odkaz:
http://arxiv.org/abs/2312.05546
Let W be a real symplectic space and (G,G') an irreducible dual pair in Sp(W), in the sense of Howe, with G compact. Let $\widetilde{\mathrm{G}}$ be the preimage of G in the metaplectic group $\widetilde{\mathrm{Sp}}(\mathrm{W})$. Given an irreducibl
Externí odkaz:
http://arxiv.org/abs/2108.10545
We consider a dual pair $(G, G')$, in the sense of Howe, with G compact acting on $L^2(\mathbb{R}^n)$, for an appropriate $n$, via the Weil representation $\omega$. Let $\tilde{\mathrm{G}}$ be the preimage of G in the metaplectic group. Given a genui
Externí odkaz:
http://arxiv.org/abs/2107.09348
Publikováno v:
In Indagationes Mathematicae June 2024
Let $X=G/K$ be a Riemannian symmetric space of the noncompact type and restricted root system $BC_2$ or $C_2$ (except $G=SO_0(p,2)$ with $p>2$ odd). The analysis of the meromorphic continuation of the resolvent of the Laplacian of $X$ is reduced from
Externí odkaz:
http://arxiv.org/abs/1511.00488
Let $X=X_1 \times X_2$ be a direct product of two rank-one Riemannian symmetric spaces of the noncompact type. We show that when at least one of the two spaces is isomorphic to a real hyperbolic space of odd dimension, the resolvent of the Laplacian
Externí odkaz:
http://arxiv.org/abs/1508.07032
We show that the resolvent of the Laplacian on SL(3,$\mathbb{R}$)/SO(3) can be lifted to a meromorphic function on a Riemann surface which is a branched covering of $\mathbb{C}$. The poles of this function are called the resonances of the Laplacian.
Externí odkaz:
http://arxiv.org/abs/1411.6527
We consider a dual pair $(G,G')$, in the sense of Howe, with $G$ compact acting on $L^2(\mathbb R^n)$ for an appropriate $n$ via the Weil Representation. Let $\widetilde{G}$ be the preimage of $G$ in the metaplectic group. Given a genuine irreducible
Externí odkaz:
http://arxiv.org/abs/1405.2431
Publikováno v:
J. Funct. Anal. 268 (2015), 278-335
We prove a Weyl Harish-Chandra integration formula for the action of a reductive dual pair on the corresponding symplectic space $W$. As an intermediate step, we introduce a notion of a Cartan subspace and a notion of an almost semisimple element in
Externí odkaz:
http://arxiv.org/abs/1112.0479
Publikováno v:
In Journal of Functional Analysis 15 February 2017 272(4):1477-1523