Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Prouff, Antoine"'
Autor:
Prouff, Antoine
We prove a general version of Egorov's theorem for evolution propagators in the Euclidean space, in the Weyl--H\"ormander framework of metrics on the phase space. Mild assumptions on the Hamiltonian allow for a wide range of applications that we desc
Externí odkaz:
http://arxiv.org/abs/2412.04320
Autor:
Prouff, Antoine
The smoothing effect states that solutions to the Schr{\"o}dinger equation in the Euclidean space have, for almost-every time, a local-in-space improved regularity (gain of half a derivative in Sobolev spaces). In this note, we show that, for the Sch
Externí odkaz:
http://arxiv.org/abs/2412.01209
Autor:
Prouff, Antoine
We investigate trend to equilibrium for the damped wave equation with a confining potential in the Euclidean space. We provide with necessary and sufficient geometric conditions for the energy to decay exponentially uniformly. The proofs rely on tool
Externí odkaz:
http://arxiv.org/abs/2406.17358
Autor:
Prouff, Antoine
We consider the Schr{\"o}dinger equation in $\mathbf{R}^d$, $d \ge 1$, with a confining potential growing at most quadratically. Our main theorem characterizes open sets from which observability holds, provided they are sufficiently regular in a cert
Externí odkaz:
http://arxiv.org/abs/2307.00839
We prove the stability of optimal traffic plans in branched transport. In particular, we show that any limit of optimal traffic plans is optimal as well. This is the Lagrangian counterpart of the recent Eulerian version proved in [CDM19a].
Externí odkaz:
http://arxiv.org/abs/2003.11793
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.