Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Prokert, Georg"'
Autor:
Prokert, Georg, Matioc, Bogdan-Vasile
Publikováno v:
Z. Angew. Math. Phys., 74 (6), 212, 2023
We consider the quasistationary Stokes flow that describes the motion of a two-dimensional fluid body under the influence of surface tension effects in an unbounded, infinite-bottom geometry. We reformulate the problem as a fully nonlinear parabolic
Externí odkaz:
http://arxiv.org/abs/2209.13376
Autor:
Baumeier, Björn, Çaylak, Onur, Mercuri, Carlo, Peletier, Mark, Prokert, Georg, Scharpach, Wouter
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 January 2025 541(2)
Autor:
Matioc, Bogdan-Vasile, Prokert, Georg
Publikováno v:
NoDEA Nonlinear Differential Equations Appl., 29(5): Art. 54, 34 pp., 2022
We study the two-phase Stokes flow driven by surface tension for two fluids of different viscosities, separated by an asymptotically flat interface representable as graph of a differentiable function. The flow is assumed to be two-dimensional with th
Externí odkaz:
http://arxiv.org/abs/2102.12814
Autor:
Baumeier, Björn, Çaylak, Onur, Mercuri, Carlo, Peletier, Mark, Prokert, Georg, Scharpach, Wouter
We prove existence and uniqueness of solutions to the initial-value problem associated with a class of time-dependent Kohn-Sham equations coupled with Newtonian nuclear dynamics. We consider a pure power exchange term within a generalisation of the L
Externí odkaz:
http://arxiv.org/abs/2011.10542
Autor:
Matioc, Bogdan-Vasile, Prokert, Georg
Publikováno v:
Proc. Roy. Soc. Edinburgh Sect. A, 151:1815-1845, 2021
We study the two-phase Stokes flow driven by surface tension with two fluids of equal viscosity, separated by an asymptotically flat interface with graph geometry. The flow is assumed to be two-dimensional with the fluids filling the entire space. We
Externí odkaz:
http://arxiv.org/abs/2003.14010
In this paper we present a new model for single-celled, non-branching hypha tip growth. The growth mechanism of hypha cells consists of transport of cell wall building material to the cell wall and subsequent incorporation of this material in the wal
Externí odkaz:
http://arxiv.org/abs/1903.03565
Autor:
Lippoth, Friedrich, Prokert, Georg
We consider a two-phase elliptic-parabolic moving boundary problem modelling an evaporation front in a porous medium. Our main result is a proof of short-time existence and uniqueness of strong solutions to the corresponding nonlinear evolution probl
Externí odkaz:
http://arxiv.org/abs/1702.04530
Autor:
Lippoth, Friedrich, Prokert, Georg
Within the framework of variational modelling we derive a two-phase moving boundary problem that describes the motion of a semipermeable membrane separating two viscous liquids in a fixed container. The model includes the effects of osmotic pressure
Externí odkaz:
http://arxiv.org/abs/1503.06057
Publikováno v:
Eur. J. Appl. Math 27 (2016) 647-666
Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem
Externí odkaz:
http://arxiv.org/abs/1409.7252
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.