Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Prizzi, Martino"'
Autor:
Del Santo, Daniele, Prizzi, Martino
Publikováno v:
Annali di Matematica Pura e Applicata. Online first: june 22, 2024
We consider a parabolic equation whose coefficients are Log-Lipschitz continuous in $t$ and Lipschitz continuous in $x$. Combining a recent conditional stability result with a well posed variational problem, we reconstruct the initial condition of an
Externí odkaz:
http://arxiv.org/abs/2401.03837
Publikováno v:
J. Differential Equations 338 (2022), 518--550
We prove logarithmic conditional stability up to the final time for backward-parabolic operators whose coefficients are Log-Lipschitz continuous in $t$ and Lipschitz continuous in $x$. The result complements previous achievements of Del Santo and Pri
Externí odkaz:
http://arxiv.org/abs/2110.01566
Autor:
Prizzi, Martino, Del Santo, Daniele
We prove some $C^\infty$ and Gevrey well-posedness results for hyperbolic equations whose coefficients lose regularity at one point.
Comment: 11 pages; revised version
Comment: 11 pages; revised version
Externí odkaz:
http://arxiv.org/abs/2105.05153
Autor:
Del Santo, Daniele, Prizzi, martino
We prove uniqueness for backward parabolic equations whose coefficients are Osgood continuous in time for $t>0$ but not at $t=0$.
Comment: 16 pages
Comment: 16 pages
Externí odkaz:
http://arxiv.org/abs/2009.05659
Publikováno v:
Annali di Matematica (2019)
We prove continuous dependence on initial data for a backward parabolic operator whose leading coefficients are Osgodd continuous in time. This result fills the gap between uniqueness and continuity results obtained so far.
Comment: 32 pages. ar
Comment: 32 pages. ar
Externí odkaz:
http://arxiv.org/abs/1902.08573
Publikováno v:
in "Analysis, Probability, Applications and Computation - Proceedings of the 11th ISAAC Congress, Vaxjo (Sweden) 2017", Karl-Olof Lindahl, Torsten Lindstrom, Luigi Rodino, Joachim Toft, Patrik Wahlberg (eds.), Birkhauser (2019))
The interest of the scientific community for the existence, uniqueness and stability of solutions to PDE's is testified by the numerous works available in the literature. In particular, in some recent publications on the subject an inequality guarant
Externí odkaz:
http://arxiv.org/abs/1801.07890
Autor:
Del Santo, Daniele, Prizzi, Martino
Using Bony's paramultiplication we improve a result obtained in in a previous paper for operators having coefficients non-Lipschitz-continuous with respect to $t$ but ${\mathcal C}^2$ with respect to $x$, showing that the same result is valid when ${
Externí odkaz:
http://arxiv.org/abs/1112.2472
Autor:
Prizzi, Martino
Under fairly general assumptions, we prove that every compact invariant set $\mathcal I$ of the semiflow generated by the semilinear damped wave equation u_{tt}+\alpha u_t+\beta(x)u-\Deltau = f(x,u), (t,x)\in[0,+\infty[\times\Omega, u = 0, (t,x)\in[0
Externí odkaz:
http://arxiv.org/abs/1107.2589
Autor:
Prizzi, Martino
Under fairly general assumptions, we prove that every compact invariant set $\mathcal I$ of the semiflow generated by the semilinear reaction diffusion equation u_t+\beta(x)u-\Delta u&=f(x,u),&&(t,x)\in[0,+\infty[\times\Omega, u&=0,&&(t,x)\in[0,+\inf
Externí odkaz:
http://arxiv.org/abs/1102.4062
Autor:
Prizzi, Martino
Under fairly general assumptions, we prove that every compact invariant subset $\mathcal I$ of the semiflow generated by the semilinear damped wave equation \epsilon u_{tt}+u_t+\beta(x)u-\sum_{ij}(a_{ij} (x)u_{x_j})_{x_i}&=f(x,u),&& (t,x)\in[0,+\inft
Externí odkaz:
http://arxiv.org/abs/0903.2782