Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Prinz, David"'
Autor:
Prinz, David Nicolas
Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiv
Externí odkaz:
http://edoc.hu-berlin.de/18452/26190
Autor:
Prinz, David
We discuss how the incorporation of a cosmological constant affects the perturbative quantization of (effective) Quantum General Relativity. To this end, we derive the gravitational Slavnov--Taylor identities and appropriate renormalization condition
Externí odkaz:
http://arxiv.org/abs/2303.14160
Autor:
Prinz, David
Publikováno v:
Humboldt University of Berlin (2022)
We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to th
Externí odkaz:
http://arxiv.org/abs/2210.17510
Autor:
Prinz, David
We consider (effective) Quantum General Relativity coupled to the Standard Model and study its transversality. To this end, we provide all propagator and three-valent vertex Feynman rules. Then we examine the longitudinal, identical and transversal p
Externí odkaz:
http://arxiv.org/abs/2208.14166
Autor:
Prinz, David
We derive and present symmetric ghost Lagrange densities for the coupling of General Relativity to Yang--Mills theories. The graviton-ghost is constructed with respect to the linearized de Donder gauge fixing and the gauge ghost is constructed with r
Externí odkaz:
http://arxiv.org/abs/2207.07593
Autor:
Prinz, David
We consider (effective) Quantum General Relativity coupled to the Standard Model (QGR-SM) and study the corresponding BRST double complex. This double complex is generated by infinitesimal diffeomorphisms and infinitesimal gauge transformations. To t
Externí odkaz:
http://arxiv.org/abs/2206.00780
Autor:
Prinz, David, Schmeding, Alexander
Publikováno v:
Class. Quantum Grav. 39 (2022) 155005
We study the Newman--Unti (NU) group from the viewpoint of infinite-dimensional geometry. The NU group is a topological group in a natural coarse topology, but it does not become a manifold and hence a Lie group in this topology. To obtain a manifold
Externí odkaz:
http://arxiv.org/abs/2109.11476
Autor:
Prinz, David, Schmeding, Alexander
Publikováno v:
Class. Quantum Grav. 39 (2022) 065004
We study the Lie group structure of asymptotic symmetry groups in General Relativity from the viewpoint of infinite-dimensional geometry. To this end, we review the geometric definition of asymptotic simplicity and emptiness due to Penrose and the co
Externí odkaz:
http://arxiv.org/abs/2106.12513
Autor:
Prinz, David
Publikováno v:
Class. Quantum Grav. 38 (2021) 215003
This article derives and presents the Feynman rules for (effective) Quantum General Relativity coupled to the Standard Model for any vertex valence and with general gauge parameter $\zeta$. The results are worked out for the metric decomposition $g_{
Externí odkaz:
http://arxiv.org/abs/2004.09543
Autor:
Prinz, David
Publikováno v:
Math.Phys.Anal.Geom. 25 (2022) 3, 20
We study the perturbative renormalization of quantum gauge theories in the Hopf algebra setup of Connes and Kreimer. It was shown by van Suijlekom (2007) that the quantum counterparts of gauge symmetries -- the so-called Ward--Takahashi and Slavnov--
Externí odkaz:
http://arxiv.org/abs/2001.00104